SEMESTER EXAMINATION-2021

CLASS:M. Sc. I Semester

SUBJECT: MATHEMATICS

PAPER CODE and NAME: MMA-C113(Advanced Real Analysis)

Time: 3 hour

Max. Marks: 70 Min. Pass: 40%

Note: Question Paper is divided into two sections: A and B. Attempt both the sections as per given instructions.

SECTION-A (SHORT ANSWER TYPE QUESTIONS)

- **Instructions**: Answer any FIVE questions in about 150 words (5 X 6 = 30 Marks) each. Each question carries 6 marks.
- **Question-1:** Test the uniform convergence for the sequence $\{f_n\}$ where $f_n(x) = e^{-nx}$ for $x \ge 0$.
- **Question-2:** Show that a set is infinite iff it contains a denumerable subset.
- **Question-3:** Prove that every set *E* having outer measure zero, is measurable. Hence or otherwise, show that every subset of *E* is measurable.
- **Question-4:** Prove that a measurable function f is integrable over E if and only if |f| is integrable over E.
- **Question-5:** Test the uniform convergence for the series $\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$ in]0, k[and]0, ∞[.
- Question-6: Prove that a continuous function defined on a measurable set is measurable.
- **Question-7:** If f and g are measurable functions on a common domain E, then the sets $\{x \in E: f(x) \le g(x)\}$ show that each of and $\{x \in E: f(x) = g(x)\}\$ are measurable.
- **Question-8:** Prove that almost uniform convergence implies convergence in measure.
- **Question-9:** Prove that a Riemann integrable function defined on [a, b] is measurable.
- **Question-10:** If f is an integrable function such that f = 0, then show that $\int f = 0$

SECTION-B (LONG ANSWER TYPE QUESTIONS)

Instructions: Answer any FOUR questions in detail. Each (4 X 10 = 40 Marks) question carries 10 marks.

- **Question-11:** If a sequence $\{f_n\}$ converges uniformly to f on [a,b] and each function f_n is integrable on [a,b], then show that f is integrable on [a,b] and the sequence $\{\int_a^b f_n \, dx\}$ converges uniformly to $\int_a^b f \, dx$.
- **Question-12:** If a sequence $\{f_n\}$ converges in measure to a function f on E, then show that there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges to f a.e. on E.
- **Question-13:** Prove that every Borel set in *R* is measurable.
- Question-14: State and prove Fatou's lemma.
- **Question-15:** Test the uniform convergence and continuity of the following sequences:

(a).
$$\{x^n\}$$
 where $x \in [0,1]$ (b). $\{\frac{1}{1+nx}\}$ where $x \in [0,1]$.

- **Question-16:** Let $\{E_i\}$ be an infinite increasing sequence of sets, then show that $m^*(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} m^*(E_n)$.
- **Question-17:** If f is a measurable function defined on E, then show that for each $\epsilon > 0$, \exists a closed set $F \subset E$ with $m(F E) < \epsilon$ such that f is continuous on F.
- **Question-18:** Let $\{u_n\}$ be a sequence of integrable functions on E such that $\sum_{n=1}^{\infty} u_n$ converges a.e. on E. Let g be a function which is integrable on E and satisfy $|\sum_{i=1}^n u_i| \leq g$ a.e. on E for each n. Then show that $\sum_{n=1}^{\infty} u_n$ is integrable on E and $\int_E \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \int_E u_n$.

Paper Code:MMA-C113