CHOICE BASED CREDIT SYSTEM EVALUATION SCHEME

AND

COURSE OF STUDY

IN

B.TECH.

MECHANICAL ENGINEERING

(2024-25 (Odd Semester))

SCHEME OF EXAMINATION & SYLLABUS

FACULTY OF ENGINEERING AND TECHNOLOGY GURUKULA KANGRI DEEMED TO BE UNIVERSITY, HARIDWAR

GURUKULA KANGRI (DEEMED TO BE UNIVERSITY), HARIDWAR

Faculty of Engineering & Technology Mechanical Engineering B. Tech. First Year Syllabus in accordance with AICTE Model Curriculum

B.Tech. I Year Semester - I

					F	Evaluat	ion Sche		Credits	
DSC/ SEC/ AECC	Subject		Periods		Continuous Internal Assessment		CIA Total	ESE	Total Marks	
		L	T	P	CT	TA				
		ı	TH	EOR	Y		I.		11	
BAC-C102/ BAC-C202	Engineering Chemistry	3	1	0	20	10	30	70	100	4
BEM-C102	Engineering Mathematics—I	3	1	0	20	10	30	70	100	4
BCE-C102/ BCE-C202	Programming for Problem Solving	3	1	0	20	10	30	70	100	4
BME-C103	Basic Mechanical Engineering		0	0	20	10	30	70	100	3
BEN-A103	Environmental Studies	2	0	0	20	10	30	70	100	0
	Induction Program				Only	for fir	st 3 weel	ks		
]	PRAC	CTIC	AL					
BAC-C151/ BAC-C251	Engineering Chemistry Lab	0	0	2	10	5	15	35	50	1
BCE-C151 BCE-C251	Programming for Problem Solving Lab	0	0	2	10	5	15	35	50	1
BME-C153/ BME-C253	Engineering Graphics and Design Lab	1	0	2	10	5	15	35	50	2
BEG-A151/ BEG-A251	Technical Communication	0	0	2	10	5	15	35	50	1
	TOTAL	1 4	4	8	140	70	210	490	700	20

Coding:

BME : Mechanical Courses **BET** : Electronic Courses **BEM** : Mathematics : Electrical Courses : Humanities Courses : Computer Courses BEE BHU **BCE** : Applied Chemistry : Applied Physics BEN : Environment Science **BAC** BAP : Discipline Specific Α : Ability Enhancement : Skill Enhancement Courses

Courses Compulsory Courses

E : Discipline Elective ESE : End Semester Examination

Courses

Semester
0, 5 & 6 stands for Theory, Practical & Seminar / Project respectively

BME-C 101
Paper Code

L-LECTURE; T-TUTORIAL; P-PRACTICAL; CT-CUMULATIVE TEST;

TA- TEACHER ASSESSMENT; ESE-ENDSEMESTER EXAMINATION

Course Code: BAC-C102/C202

Course Name: Engineering Chemistry

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 4
3 1 0	

Prerequisites:	Engineering Chemistry
Objectives:	1. To acquire knowledge about the periodic properties, oxidation number, hydrogen bonding and hybridization.
	2. To understand the general concepts of thermodynamics, chemical kinetics and acid-base equilibrium.
	3. To gain the knowledge of polymers, conducting polymers, synthesis, properties and uses of some common polymers, nylons and rubbers.
	4. To learn the significance of Nanochemistry and different approaches to synthesis of Nanoparticles.
	5. To understand the organic reactions like addition reactions, elimination reactions, substitution reactions and oxidation-reduction reactions.
	6. To understand the synthesis of some common drugs like Aspirin, Phenacetin & Paracetamol.
Course	Dr. Ajay Kumar
Coordinator	

NOTE:	The question paper shall consist of two sections (SecA and SecB). Section-A shell contain ten
	short type questions of six marks each and the student shall be required to attempt any five
	questions. Section-B shall contain eight descriptive type questions of ten marks each and students
	shall be required to attempt any four questions. Questions shall be uniformly distributed from the
	entire syllabus. The previous year paper/model paper can be used as a guideline and the following
	syllabus should be strictly followed while setting the question paper.

UNIT	Module	Course Content	No. of	POs
			Hours	mapped
UNIT-1	Module-1	Shielding and effective nuclear charge, Penetration of orbitals, Division of elements into s, p, d and f blocks, Variation of s, p, d and f orbital energies of atoms in the periodic table, Atomic and Ionic sizes, Ionization potential, Electron affinity, Electronegativity, Dipole moment, Polarizability.	05	PO1/ PO2/ PO3/ PO4/ PO5
	Module-2	Oxidation states, Coordination numbers and geometries, Hydrogen bonding, Concept of hybridization.	03	PO1/ PO2/ PO3/ PO4/ PO5
UNIT-2	Module-3	Introduction, Rate of reaction, Factors influencing rate of reaction, Rate law and reaction order, Differentiate between molecularity and reaction order, Arrhenius equation, Activation energy and its determination, Transition state theory of reaction rates.	04	PO1/ PO2/ PO3/ PO4/ PO5
	Module-4	Thermodynamic functions: Energy, Enthalpy, Entropy and Free energy, Physical significance of entropy, Estimations of entropy and free energies, Free energy and emf, Cell potentials, Nernst equation and applications (without derivation) Acid-base, solubility and solubility product.	04	PO1/ PO2/ PO3/ PO4/ PO5
UNIT-3	Module-5	Basic concepts of polymers, Classification of polymerization, Industrial applications of polymers, Differentiate between (i) Addition and condensation polymers, (ii) Thermoplastic and thermosetting polymers, Elementary idea of biodegradable and conducting polymers.	06	PO1/ PO2/ PO3/ PO4/ PO5
	Module-6	Plastics: Synthesis, properties and uses of Polyvinyl chloride (PVC), Polytetrafluoroethylene (PTFE)/Teflon, Polymethyl methacrylate (PMMA), Bakelite. Nylons: Introduction to Nylons, Preparation, properties and	02	PO1/ PO2/ PO3/ PO4/ PO5

		uses of Nylon 6, and Nylon 6,6. Rubbers: Natural rubber and synthetic rubber, Vulcanization of rubber, Advantages of vulcanized rubber.		
UNIT-4	Module-7	Introduction, Characteristic properties of nanomaterials, Synthesis of nanomaterials (Top-down and bottom-up approach), Introduction, properties and applications of Fullerenes (C60), Carbon nanotubes (CNT's), Nanorods and Nanowires, Applications of nanomaterials in Medicine, Energy science, Bio-sensors, Electronics, Catalysis and Fabrics.	08	PO1/ PO2/ PO3/ PO4/ PO5
UNIT-5	Module-8	Introduction to reactions involving Addition, Elimination, Substitution and Oxidation and Reduction. Isomerism: Basic concept of geometrical and optical isomerism.	06	PO1/ PO2/ PO3/ PO4/ PO5
	Module-9	Definitions of different classes of common drugs, Synthesis and uses of Aspirin, Paracetamol and Phenacetin.	02	PO1/ PO2/ PO3/ PO4/ PO5
Total No.	of Hours		40	

Learning Outcomes:

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications. The course will enable the student to:

- **Define** the shielding effect, effective nuclear charge, dipole moment, oxidation-reduction, oxidation number, coordination number, hydrogen bonding, hybridization, reaction rate, molecularity, reaction order, internal energy, entropy, enthalpy, free energy, cell potentials, acids-bases, polymers, nylons, nanotechnology, nanoscale, and nanoparticles (**L1**).
- Illustrate the periodic properties, Arrhenius equation, activation energy, solubility product, Nernst equation, biodegradable polymer, conducting polymer, vulcanization of rubber, nanomaterials, Fullerenes, Carbon nanotubes, nanorods, nanowires, addition reaction, elimination reaction, substitution reaction, geometrical isomerism and optical isomerism (L3).
- o **Describe** the trends of periodic properties in the periodic table (**L2**).
- o Calculate the oxidation number and coordination number (L4).
- **Determine** the hybridization, reaction rate, molecularity, reaction order, solubility product, activation energy, entropy and free energy (L3).
- **Discuss** the factors affecting the periodic properties, consequences due to hydrogen bonding, factors affecting the reaction rate, theories of reaction rates, significance of entropy, applications of Nernst equation, characteristic properties of nanomaterials, electrophilic and nucleophilic addition, E1 and E2 elimination, S_N1 and S_N2 substitution (L2).
- **Differentiate** between molecularity and reaction order, addition and condensation polymers, thermoplastics and thermosetting polymers, E1 and E2 elimination, S_N1 and S_N2 substitution, geometrical and optical isomerism (**L4**).
- Explain the process of vulcanization, advantages of vulcanized rubber, applications of polymers, and nanomaterials (L2).
- o **Illustrate** the synthesis of PVC, PMMA, Teflon, Bakelite, Nylon 6, Nylon 6,6, Aspirin Paracetamol and Phenacetin (**L3**).

S. No.	Name of Authors /Books /Publisher				
		Publication			
1	B.H. Mahan, R.J. Myers, University Chemistry, 4 th Edition, (Addison-Wesley) Thomson	1998			
	Press (India) LTD. (ISBN: 0-201-45576-5).				
2	P.W. Atkins, Physical Chemistry, Oxford University Press, New York (ISBN: 0-19-	2005			
	566902-9).				
3	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, 44th Edition,	2009			
	Vishal Publishing Co., Jalandher, India (ISBN: 81-88646-74-1).				
4	P.C. Jain & M. Jain, Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing	2015			
	Company (P) LTD., New Delhi (ISBN: 978-93-5216-000-6).				
5	S.S. Dara, A Textbook of Engineering Chemistry, S. Chand & Company LTD., Ram	2002			
	Nagar, New Delhi (ISBN: 81-219-0539-9).				

6	Dr. Rajshree Khare, A textbook of Engineering Chemistry, S.K. Kataria & Sons, New	2019
	Delhi, India.	
7	A Text Book of Engineering Chemistry, 16th Edition, by Jain & Jain - Dhanpat Rai &	2015
	Sons, New Delhi, India.	
8	A Text Book of Engineering Chemistry by Dr. Rajshree Khare – S.K. Kataria & Sons,	2019
	India.	

BAC-C102/202
Engineering Chemistry
CO-PO/PSO MAPPING
CO-PO/PSO MAPPING

Cou rse Out com	Action Verb (CO)	Bloo m's Level			omes (PC										Sp Ou	ogran ecific itcome SOs)	
es (CO s)			Engi neeri ng Kno wledg e	Probl em Anal ysis	Desig n/ Devel opme nt of Soluti ons	Cond uct Invest igatio ns of Comp lex Proble ms	Mod ern Tool Usag e	The Engi neer and Soci ety	Envir onme nt and Sustai nabilit y	Et hic s	Ind idu al and Tea m Wo rk	Comm unicati on	Proje ct Mana geme nt and Finan ce	Life Lon g Lea rnin g			
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	P O 8	PO 9	PO10	PO1 1	PO 12	PS O1	PS O 2	PS O 3
CO1	Define	Rem embe r L1	3	3	2	2	3	3	2	2		3		3			
CO2	Illustr ate	Appl y L3	3	2	3	3	3	3	3	3		3	2	3			
CO3	Descri be	Unde rstan d L2	3	3	3	3					3	3					
CO4	Calcul ate	Anal yze L4	3	3	3	2					3	3					
CO5	Deter mine	Appl y L3	3	3	3	3	3	3			3	3					
CO6	Discus s	Unde rstan d L2	3	3	3	3	2	3			3	3		3			
CO7	Differ entiate	Anal yze L4	3	3	3	3		3	3		3	3		3			
CO8	Explai n	Unde rstan d L2	3	2	3	2	3	3	3		3	3	3	3			
CO9	Illustr ate	Appl y L3	3	2	2	2		3	3		3	3	3	3			
	Avei	rage	3	2.6	2.7	2.5	2.8	3	2.8	2. 5	3	3	2.6	3			

Mapping %age	0 - 5	6 - 40 = 1	41 - 60 = 2	61 - 100 = 3
Manning	No	Low/	Mod	Subst
Mapping Correlation	corre latio	Slight	erat e	antial /
	n			High

Mapping Correlation	No correl ation	Low / Slig ht	Mod erat e	Subst antial / High
		1	2	3

Course Name: ENGINEERING MATHEMATICS-I

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit : 3
3 0 0	

Prerequisites:	Fundamental of Calculus
Objectives:	1. Introduction to differential calculus, Leibnitz theorem asymptotes,
	tracing of curves.
	2. Introduction to partial differential calculus, Jacobians, Maxima, Minima
	and their application in engineering problems.
	3. Introduction to double and triple integrals and its application to find
	area and volume, centre of gravity of plane and solids.
	4. Introduction to vector calculus, curl, divergence and their application in
	engineering problems.
	5. Introduction to matrices and their properties.
Course Coordinator	Dr Vivek Geol
Course Faculty	Dr Vivek Goel
Lectures	40 Hours

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

Module	Course Content	No. o Hour	
Module-1	Differential Calculus I: Successive differentiation, Leibnitz theorem, Taylor's & Maclaurin's, Expansion, Indeterminate forms, Radius of curvature, Asymptotes, Double points and their classification, Tracing of curves.	10	PO1/PO2/P 03/PO4/PO 5/PO6/PO1 0/PO12
Module-2	Differential Calculus II: Partial Differentiation of functions, Normal to surfaces and tangent	8	PO1/PO2/ PO6/PO7/ PO12
	plane, Change of variables, Jacobian, Taylor's series of two variables, Truncation errors, Extrema of function of two and more variables, Method of Lagrange's multipliers Syllabus after Sessional 1 & before Sessional 2(21 _Lectures & 4 _Tutorian)	ls/ Practica	ul's)
Module-3	Multiple Integrals: Fundamental Theorem of integral calculus, Differentiation under the integral sign, Double and triple integrals, Change of order of integration, change of variables. Application to arc length, area, volume, centroid and moment of inertia. Gamma and Beta functions, Dirichlet's integral.	6	PO1/PO2/ PO3/PO6/ PO8/PO10 /PO12
Module-4	Vector Calculus: Differentiation of a vector, Scalar and vector fields, Gradient, Divergence, Curl and their physical meanings, Differential operator and identities, Line, Surface and Volume integrals, Green's theorem in plane. Gauss and Stoke's theorems (without proof). Simple applications.	6	PO1/PO2/ PO4/PO5/ PO6/PO7/ PO9/PO10 /PO12
Syllabus after	Sessional 2 (7_Lectures &2 _Tutorials/ Practical's)		
Module5	Matrices: Elementary row/ column operations, Rank of a matrix and its applications, Eigen-values and Eign vectors, Cayley-Hamilton theorem, Diagonalisation of Matrices, Linear dependence and independence, Normal matrices, Complex matrices and unitary matrices	10	PO1/PO2/ PO3/PO4/ PO5/PO6/ PO8/PO9/ PO10/PO1 2
Total No.		40	

Learning Outcomes Identify the application of partial differentiation and apply for evaluating maxima, minima, series and Jacobians. 2. To understand the concept of multiple integral and apply for finding area, volume, centre of mass and centre of gravity. 3. The concept of vector and apply for directional derivatives, tangent and normal planes. Also evaluate line, surface and volume integrals and its application. 4. Understand the concept of matrices and their applications to solve linear simultaneous equations. The concept of eigen value and eigen vector and complex matrices.

Suggested books: (According to the reference style decided by departmental Board of Studies)

S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	Prasad C., A first course in mathematics for Engineers, Prasad	
	Mudranalaya	
2.	Kreyszig E., Advanced Engineering Mathematics, John Wiley, New	1999
	York,	
3.	Grewal B.S., Higher Engineering Mathematics, Khanna, New Delhi,	2000
4.	Srivastava R.S.L., Engineering Mathematics Vol.I	

Course Code: BCE-C102/ BCE-C202 Course Name: PROGRAMMING FOR PROBLEM SOLVING

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 4
3 1 0	

Prerequisites:	None
Objectives:	
Course	Dr. Aman Tyagi
Coordinator	

NOTE:	The question paper shall consist of two sections A, B. Section A contains 10 short type
	questions of 6 marks each, and student shall be required to attempt any five questions. Section
	B contains 8 long type questions of ten marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus.
	any four questions. Questions shall be uniformly distributed from the entire synabus.

Module	Course Content	No. of	POs	PSOs
		Hours	mapped	mapped

Module-1 Introduction to Computers: Block diagram of computers, functions of its important components, Memory and I/O devices. Concept of assembler, interpreter, compiler & generation of languages. Number System: Decimal, Binary, Octal, and Hexadecimal numbers and their arithmetic (addition, subtraction, multiplication, and division): 1's and 2's complements	08	PO1/ PO2/ PO3	PSO1/ PSO2
Module-2 Programming in C: History, Introduction to C Programming Languages, Structure of C Programs, Compilation and Execution of C Programs, debugging techniques, Data Type and sizes, Declarations of variables, Modifiers, Identifiers and keywords, Symbolic Constants, Storage classes (automatic, external, register and static), Enumerations, command line parameters, Macros, The C Pre-processor. Operators: Unary operators, Arithmetic & Logical operators, Bit wise operators, Assignment operators and expressions, Conditional expressions, Precedence and order of evaluation. Control Statements: If-else, switch, break, continue, the coma operator, go to statement. Loops: while, do-while, for loop.	08	PO1/ PO2/ PO3	PSO1/ PSO2
 Module-3 Arrays: One-dimensional arrays: declaration, initialization and application. Two-dimensional array: declaration, initialization and application, Multidimensional arrays. Handling of Character Strings: Declaring and initializing string variables, reading strings, Writing strings, Arithmetic operation on strings, comparison of two strings and string handling functions. Pointers: Accessing the address of the variable, Declaring and initializing pointers, accessing a variable through its pointer expression, pointer increment and scale factor, pointers and array, pointers and character strings. 	08	PO1/ PO2/ PO3	PSO1 / PSO2
Module-4 Functions: Need for user defined function, return value and its type, function calls, no argument and No return values function, Argument and No return values functions, argument and return value functions. Handling of non-integer function, Scope and life time of variable in functions. Recursion: Recursive Definition and processes, recursion in C, example of recursion, Tower oh Hanoi Problem, simulating recursion, Backtracking, recursive algorithms, principles of recursion, tail recursion, removal of recursion.	08	PO1/ PO2/ PO3	PSO1 / PSO2
Module-5 Structures: Structures definition, giving value to members, structure initialization, array of structures, array within structures, structures within structures, structures and functions, Structure Pointers. File Handling: Creating and Deleting a File, Updating File, Copying File, Searching & Sorting in a File.	08	PO1/ PO2/ PO3	PSO1 /PSO 2
Total No. of Hours	40		

S. No.	Name of Authors /Books /Publisher/Year
1.	Rajaraman V.(3/e), Fundamental of Computers, PHI, New Delhi, 1999
2.	Sanders, D.H., Computers Today, Mcgraw Hill, 1998
3.	Kris Jamsa, DOS the complete reference, Tata McGraw Hill
4.	J.Peek Tim O'reilly & M.Locekides, UNIX POWER TOOLS, BPB Publication
5.	Yashwant Kanetkar, Let Us C, BPB
6.	Yashwant Kanetkar, C In Depth, BPB

Course Name: BASIC MECHANICAL ENGINEERING

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	None
Objectives:	
Course	
Coordinator	
NOTE.	The question paper shall consist of two sections A. P. Section A contains 10 short

NOTE:	The question paper shall consist of two sections A, B. Section A contains 10 short
	type questions of 6 marks each, and student shall be required to attempt any five
	questions. Section B contains 8 long type questions of ten marks each and student
	shall be required to attempt any four questions. Questions shall be uniformly
	distributed from the entire syllabus.

Module	Course Content	No. of	POs	PSOs
		Hours	mapped	mapped
Module-1	Thermodynamics I : Introduction to SI units, Definition of	08	PO1/	PSO1/
	thermodynamic system, Surrounding and Universe, Quasi		PO2/PO3	PSO2
	static process, Energy interaction Zeroth law, Concept of			
	temperature First law of thermodynamics, Application to			
	closed and open system, Concept of Enthalpy, steady flow			
	energy equation, Throttling process.			
Module-2	Thermodynamics II: Second law, reversible and	08		PSO1/
	irreversible process, Thermal reservoir, heat engines and		PO2/	PSO2
	thermal efficiency, COP of heat pump and refrigerator,		PO3	
	Carnot cycle, Claudius inequality, Concept of entropy,			
	Entropy change for ideal gases.			
Module-3	Thermodynamics III: Generation of steam at constant	08		PSO1/
	pressure, Properties of steam, Use of property diagram,			PSO2
	Process of vapor in closed and open system, Rankine cycle.		PO3	
	Stroke clearance ratio, Compression ratio, Definition and			
	calculation of mean effective pressure (no proof) for air			
	standard cycles (Otto and diesel cycles			
Module-4	Mechanics: Trusses: Plane structure, (Method of Joints and	08		PSO1/
	Sections only) Beams: Bending moment and shear force			PSO2
	diagram for statically determinate beams.		PO3	
Module-5	Strength of Materials: Simple stresses and strain, strain	08	PO1/	PSO1/PSO
	energy, stress- strain diagram, elastic constants. Compound		PO2/	2
	stress and strain: state of stress at a point, Simple tension,		PO3	
	pure shear, general two-dimensional stress system, principal			
	planes, principal stresses and strains, Mohr's stress circle,			
	Poisson's ratio, maximum shear stress.			
Total No. o	of Hours	40		

S. No.	Name of Authors /Books /Publisher/Year
1.	Kumar DS (2/e), Thermal Science and Engineering, S.K.Kataria, New Delhi, 2001
2.	P.K.Nag (2/e), Engineering Thermodynamics, TMH, New Delhi,2001
3.	R.Yadav(7/e), Thermal Engineering, Central Publishing House, Allahabad, 2000
4.	Shames Irving H.(4/e), Engineering Mechanics, PHI, New Delhi, 1994
5.	Hibler (1/e), Statics and Dynamics, Pearson Education, Singapore, 2000

Course Code: BEN-A103

Course Name: ENVIRONMENTAL STUDIES

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 4
3 1 0	

Prerequisites:	None
Objectives:	
Course Coordinator	

syllabus.	NOTE:	The question paper shall consist of two sections A and B. Section A contains 10 short type questions of 6 marks each and student shall be required to attempt any five questions. Section B contains 8 long type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus.
-----------	-------	--

Module	Course Content	No. of Hours	POs mapped	PSOs mapped
Module-1	The Multidisciplinary Nature of Environmental Studies & Ecosystems: (a) Definition, scope and importance of ecology and environment (b) The ecological components: (i) Abiotic components: soil, water, light, humidity and temperature (ii) Biotic components & their relationships- symbiosis, commensalisms, parasitism, predation and antibiosis (c) Concept of an ecosystem (d) Structure and function of an ecosystem (e) Producers, consumers and decomposers (f) Energy flow in the ecosystem (g) Ecological succession (h) Food chains, food webs and ecological pyramids (i) Introduction, types, characteristic features, structure and function of the following ecosystems: (i) Forest ecosystem (ii) Grassland ecosystem (iii) Desert ecosystem (iv) Aquatic ecosystems (pond, river, ocean estuaries, streams, lakes) (j) Need for public awareness	08	PO1/ PO2/ PO3	PSO1/ PSO2
Module-2	Natural Resources: (a) Renewable and Non-Renewable resources (b) Natural resources and associated problems: (i) Forest resources: use and over-exploitation, deforestation case, timber extraction, mining, dams and their effects on forest and tribal people (ii) Water resources: use and over-utilization of surface and ground floods, drought, conflicts over water, dams benefits and problem (iii) Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, case studies (iv) Food resources: world food problems, changes caused by agriculture overgrazing,	08	PO1/ PO2/ PO3	PSO1/ PSO2

	T			
	effects of modern agriculture, fertilizer-pesticide problems,			
	water logging, salinity, case studies (v) Energy resources:			
	growing energy needs, renewable and non-renewable energy			
	sources, use of alternate energy sources, case studies (vi) Land			
	resources: land as a resource, land degradation, man induced			
	landslides, soil erosion and desertification (vii) Biodiversity &			
	its conservation: definition- genetic, species and ecosystem			
	diversity, values of biodiversity- consumptive use, productive			
	use, social, ethical, aesthetic and option values (viii)			
	Biodiversity at global, national and local levels, India as a			
	mega-diversity nation, hot-spots of biodiversity, threats to			
	biodiversity- habitat loss, poaching of wildlife, man-wildlife			
	conflicts; endangered and endemic species of India,			
	conservation of biodiversity: in-situ & ex-situ conservation of			
	biodiversity (ix) Bio-geographical classification of India (x)			
	Role of an individual in conservation of natural resources (xi)			
	Equitable use of resources for sustainable lifestyles.			
Module-3	Environmental Pollution: (a) Definition, causes, effects and	08	PO1/	PSO1/
	control measures of: air pollution, water pollution, soil		PO2/	PSO2
	pollution, noise pollution, thermal pollution and nuclear		PO3	
	hazards (b) Solid waste management- causes, effects and			
	control measures of urban and industrial wastes (c) Role of an			
	individual in prevention of pollution (d) Pollution case studies			
	(e) Disaster management: floods, earthquake, cyclone &			
M 1 1 4	landslides.	0.0	DO1/	PGC1/
Module-4	Social Issues and the Environment: (a) From unsustainable	08	PO1/	PSO1/
	to sustainable development (b) Urban problems related to		PO2/	PSO2
	energy (c) Water conservation, rain water conservation, rain		PO3	
	water harvesting, management (d) Resettlement &			
	rehabilitation of people- its problems and concerns, case			
	studies (e) Environmental ethics- issues and possible solutions			
	(f) Wasteland reclamation (g) Consumerism and waste			
	products (h) Population growth, variation among nations,			
	family welfare program (i) Environment and human health,			
	human rights, value education (j) HIV/AIDS (k) Role of			
	information technology (IT) in environment and human health (I) Case studies.			
Module-5	Environmental policies and laws: Salient features of	08	PO1/	PSO1/
Wiounie-3	following acts (a) Environment Protection Act 1986 (b) Air	UO	PO1/ PO2/	PSO2
	(Prevention and Control of Pollution) Act 1981 (c) Water		PO2/ PO3	F302
	(Prevention and Control of Pollution) Act 1974 (d) Wildlife		rus	
	Protection Act 1972 (e) Forest Conservation Act 1980 (f)			
	Issues involved in enforcement of environmental legislation			
	(g) Public awareness.			
Total No	of Hours	40		
10tai 190.	VI 11VUI 5	70		

Learning			
Outcomes:			

2 4 5 5 6 5 6	
S. No.	Name of Authors /Books /Publisher/Year
1.	Asthana, D. K. (2006). Text Book of Environmental Studies. S. Chand Publishing.
2.	Basu, M., Xavier, S. (2016). Fundamentals of Environmental Studies, Cambridge University Press, India
3.	Basu, R. N., (Ed.) (2000). Environment. University of Calcutta, Kolkata
4.	Bharucha, E. (2013). Textbook of Environmental Studies for Undergraduate Courses. Universities Press.
5.	De, A.K., (2006). Environmental Chemistry, 6th Edition, New Age International, New Delhi.

Course Code: BAC-C151/C251

Course Name: Engineering Chemistry Laboratory

			 <u> </u>	 	- J	<i>J</i>	
M	M: 5	50					Sessional: 15
Ti	me:	2 Hr.					ESE: 35
L	T	P					Pass: 40%
0	0	2					

Prerequisites:	Engineering Chemistry Lab.						
Objectives:	The objective of the chemistry laboratory sessions is to:						
	1. Enable the students to get hands-on practice and to understand the applications of "qualitative and quantitative analysis" in engineering.						
	2. Develop the experimental skills by manual and by instrumentation.						
	3. Make students aware about the fundamental and experimental knowledge of chromatographic techniques like ascending paper chromatography and thin layer chromatography.						
	4. Learn the students to analyze the turbidity, pH, conductivity and refractive index instrumentally.						
Course	Dr. Ajay Kumar						
Coordinator							

NOTE:	In practical examination, the student shall be required to perform one experiment which
	carries 20 marks and 15 marks shall be reserved for practical record and viva-voce
	examination. The number of students in a batch allotted to an examiner for practical
	examination shall not exceed 30 students. Addition/deletion in above list may be made in
	accordance with the facilities available with the approval of H.O.D./Dean.

LIST OF EXPERIMENTS

Choice of 10-12 experiments from the followings:

- 1. Chemical analysis of a salt (mixture of one acidic radical and one basic radical).
- 2. Determination of relative surface tension of given liquid by drop count method using stalagmometer.
- 3. Determination of relative viscosity of given liquid using Ostwald's viscometer.
- 4. Separation of given binary mixture by thin layer chromatography (TLC).
- 5. Separation of given binary mixture by ascending paper chromatography.
- 6. Determination of moisture content present in hydrated copper sulphate (CuSO₄.5H₂O).
- 7. Titration between a strong acid and strong base.
- 8. Titration between potassium permanganate and oxalic acid/Mohr's salt solution.
- 9. Determination of chloride content of given water sample by Mohr's method.
- 10. Determination of total hardness of a water sample by using standard EDTA solution.
- 11. Determination of turbidity of given sample using Nephelo turbidity meter.
- 12. Determination of conductance of different KCl solutions and calculation of the specific and equivalent conductance of each solution.
- 13. Determination of the pH of unknown solutions using a digital pH meter.
- 14. Determination of total dissolved solids (TDS) of given water samples.
- 15. Determination of refractive index of a liquid sample using the Abbe's refractometer.
- 16. Determination of molar mass of an unknown solid using the colligative property of freezing point depression.
- 17. Study of adsorption of acetic acid on charcoal and to verify Freundlich isotherm.
- 18. Preparation of a polymer (Polyvinyl chloride/Bakelite).

Learning	Laboratory Outcomes							
Outcomes:	The chemistry laboratory course will consist of experiments illustrating the principles of							
	chemistry relevant to the study of science and engineering. The students will learn to:							
	 Analyze a salt sample (L4). 							
	O Measure molecular/system properties such as surface tension, viscosity, conductance of solutions, redox potentials, pH, turbidity, refractive index, etc. (L5)							
	• Determine the concentration of unknown sample via acid-base/redox titrations (L3).							
	• Separate the components present in a mixture by TLC/Paper chromatography (L4).							
	• Estimate the moisture content of a salt, chloride content, TDS and total hardness of water sample (L4).							
	o Prepare a polymer (Polyvinyl chloride/Bakelite) (L3).							

S. No.	Name of Authors /Books /Publisher	Year of Publication
1	Advanced Practical Physical Chemistry, by J.B. Yadav – Krishna Prakashan Media.	2016
2	Analytical Chemistry Vol. I, II, III, by Dr. Subhash Kumar Agarwala & Dr. Keemti Lal – Pragati Prakashan.	
3	Applied Chemistry: Theory & Practice, Second Edition, by O.P. Virmani & A.K. Narula – New Age International Private Limited.	2017

GURUKULA KANGRI (DEEMED TO BE UNIVERSITY), HARIDWAR

Faculty of Engineering & Technology Mechanical Engineering B. Tech. Second Year Syllabus in accordance with AICTE Model Curriculum

B.Tech. II Year Semester – III

	COURSE CODE			Pe	Period per		EVALUATION SCH			IEME		
S.N		STIRTET TO	SI B IET T		week		SESSIONAL EXAM.			EXAM.	Credit	Subject
О.			OPTED	L	T	P	CT	TA	TOTAL	ESE ESE		TOTAL
			THEOR	RY SU	ВЈЕС	CTS						
1	BEM-C302	BSC-5	Engineering Mathematics-III	3	1	0	20	10	30	70	4	100
2	BME-C306	ESC-6	Materials Engineering	3	0	0	20	10	30	70	3	100
3	BME-C308	ESC-8	Engineering Mechanics	3	0	0	20	10	30	70	3	100
4	BME-C309	ESC-9	Fluid Mechanics	3	1	0	20	10	30	70	3	100
5	BME-O341	ESC-10	MOOCS-I	3	0	0	20	10	30	70	3	100
			PRACTICA P	AL / T ROJE		IING /	/					
6	BME-C356	ESC-6 Lab	Materials Engineering Lab	0	0	2	10	5	15	35	1	50
7	BME-C358	ESC-8 Lab	Engineering Mechanics Lab	0	0	2	10	5	15	35	1	50
8	BME-C359	ESC-10 Lab	Fluid Mechanics Lab	0	0	2	10	5	15	35	1	50
9	BME-C370		Project-I	0	0	2	10	5	15	35	1	50
			TOTAL	15	2	8	140	70	210	4900	20	700

L-Lecture; T-Tutorial; P-Practical; CT-Cumulative Test; TA- Teacher Assessment; ESE—End Semester Examination; BSC-Basic Science Course; ESC- Engineering Science Courses; PEC-Program Elective Course; SEC- Skill Enhancement Course; AECC- Ability Enhancement Compulsory Course; HSMC-Humanities, Social Science & Management Course

Grading & Grade Points: O(Outstanding)= 10; A⁺(Excellent)= 9; A(Very Good)= 8; B⁺(Good)= 7; B(Above Average)= 6; C(Average)= 5; P(Pass)= 4; F(Fail)= 0; Ab(Absent)= 0

Course Name: Engineering Mathematics-III

MM: 100
Time: 3 hrs
ESE: 70
L T P
Credits 4

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). Sec.-A shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. Sec.-B shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. Sec.-C shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT I

Laplace Transform: Laplace transform of elementary functions, shifting theorems, transform of derivatives, Differentiation and Integration of transforms, Heaviside unit step and Dirac Delta functions, Convolution theorem, Solution of ordinary linear differential equations used in Mechanics, Electric circuits and bending of beams.

UNIT II

Fourier Transform: Definition of Fourier transform, Fourier sine and cosine transforms. Fourier integral formula, Parseval's identity, Applications of Fourier transform in solving heat equations.

UNIT III

Z transform: Definition, Linearity property, Z transform of elementary functions, Shifting theorems, Initial and final value theorem, Convolution theorem, Inversion of Z transforms, Solution of difference equations by Z transforms.

UNIT IV

Functions of Complex Variable: Limit and Continuity of functions of Complex Variables: Analytic Functions, Harmonic Conjugate, Cauchy-Riemann Equations (without proof), Line Integral, Cauchy Goursat theorem (without proof), Cauchy Integral formula (without proof), Singular Points, Poles & Residues, Residue Theorem, Application of Residues theorem for Evaluation of Real Integral (Unit Circle).

UNIT V

Errors and Roots of Equations: Absolute, relative, round-off and truncation errors. Significant digits. Algebraic and Transcendental Equations, Numerical solution, Method of bisection, Newton-Raphson method, Direct iterative method, convergence.

Text Books / References

- 1. Kreyszig E., Advanced Engineering Mathematics, John Wiley, New York, 1999
- 2. Gerald, C.F., Wheatley P.O., Applied Numerical Analysis, Pearson, 2007.
- 3. Grewal B.S., Higher Engineering Mathematics, Khanna, New Delhi, 2000.
- 4. Jain R. K., Iyenger S.R.K., Advanced Engineering Mathematics, Narosa, 2002.
- 5. Jain R. K., Iyenger S.R.K., Jain M.K., Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, 2012.

Course Name: MATERIAL ENGINEERING

MM: 100 Time: 3 Hr.

Sessional: 30 LTP **ESE: 70** 3 0 0 Credit: 3

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). Sec.-A shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. Sec.-B shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. Sec.- C shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT-I

Crystal Structure: Crystal structure determination technique, Miller Indices, Diffusion, Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids: Point, line, interfacial and volume defects; dislocation strengthening mechanisms and slip systems.

Mechanical Property measurement: Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stress-strain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery; Hardness: Rockwell, Brinell and Vickers and their relation to strength.

UNIT-III

Static failure theories: Ductile and brittle failure mechanisms, Tresca, Von-mises, Maximum normal stress, Fick law, Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Introduction to non-destructive testing (NDT).

UNIT-IV

Alloys, substitutional and interstitial solid solutions- Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid andmonotectic reactions. Iron Iron-carbide phase diagram and microstrctural aspects of ledeburite, austenite, ferrite and cementite, cast iron.

UNIT-V

Heat treatment of Steel: Annealing, tempering, normalising and spheroid sing, isothermal transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening.

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	Higdon, A., Ohlsen, E.H., Stiles, W.B., Weese, J.A., and Riley, W.F., "Mechanics of Materials", John Wiley & Sons, ISBN: 978-0-470-50873-2.	1989
2.	Timoshenko, S.P., and Gere, J.M., "Mechanics of Materials", 2nd Ed., CBS Publishers, ISBN: 9788123908946.	2002
3.	W. D. Callister, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India, ISBN-10: 0471736961	2006
4.	Hearn, E.J., "Mechanics of Materials", 3rd Ed., Pergamon, SBN: 9780750632669.	2003

Course Name: ENGINEERING MECHANICS

MM: 100 Sessional: 30

Time: 3 Hr.

NOTE: The question paper shall consist of three sections (Sec.-A, Sec.-B and Sec.-C). Sec.-A shall contain 10 objective type questions of one mark each and student shall be required to attempt all questions. Sec.-B shall contain 10 short answer type questions of four marks each and student shall be required to attempt any five questions. Sec.- C shall contain 8 descriptive type questions of ten marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus. The previous year paper/model paper can be used as a guideline and the following syllabus should be strictly followed while setting the question paper.

UNIT-I

Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in pace – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminacy.

UNIT-II

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack.

UNIT-III

Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

UNIT-IV

Centroid of simple figures from first principle. centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.9

Introduction to Kinetics of Rigid Bodies, Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies;

Kinetics of rigid body rotation;

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	Irving H. Shames, Engineering Mechanics, 4th Edition, Prentice Hall,	2006
	ISBN: 0133569241	
2.	P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I - Statics, Vol II, – Dynamics, 9th Ed, Tata McGraw Hill, ISBN: 9781260085006	2011

3.	Bansal R.K., A Text Book of Engineering Mechanics, Laxmi Publications, ISBN-10: 8131804097.	2010
4.	Khurmi R.S., Engineering Mechanics, S. Chand & Co., ISBN-10: 8121931002.	2010
5.	Tayal A.K., Engineering Mechanics, Umesh Publications, 5SBN 9789380117386.	2010

Course Name: FLUID MECHANICS

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 3
3 1 0	

Prerequisites:	
	NILL
Objectives:	To understand the properties of fluids and fluid statics
	To derive the equation of conservation of mass and its application
	To solve kinematic problems such as finding particle paths and stream lines
	• To use important concepts of continuity equation, Bernoulli's equation and turbulence,
	and apply the same to problems .
Course	Mr. Yogesh Kumar
Coordinator	

Module	Course Content	No. of Hours
Module-1	Introduction: Fluids and continuum; Physical properties of fluids: Viscosity, Compressibility, Surface Tension, Capillarity, Vapour Pressure; Cavitation; Classification of fluids including rheological classification	4
Module-2	Pascal's law; Pressure-density-height relationship; Measurement of pressure by Manometers and mechanical gauges; Pressure on plane and curved surfaces; The Hydrostatic law; Total Pressure and Centre of pressure;	4
Module-3	Buoyancy; Stability of immersed and floating bodies; Fluid masses subjected to uniform horizontal and vertical accelerations	2
Module-4	Description of Fluid flow: Lagrangian and Eulerian approach; Types of fluid Flows: Steady and unsteady, Uniform and non-uniform, Laminar and turbulent flows, 1, 2 and 3-D flows; Stream lines, Path lines and Streak lines	4
Module-5	Differential and Integral form of Continuity equation; Rotation, Vorticity and Circulation; Elementary explanation of Stream function and Velocity potential	4
Module-6	Fluid Dynamics-I: Concept of control volume and control surface, Reynolds Transport Theorem, Introduction to Navier-Stokes Equations, Euler's equation of motion along a streamline and its integration, Bernoulli's equation and its applications – Pitot tube, Flow through orifices, Mouthpieces, Nozzles, Free and Forced vortex motion.	4
Module-7	Fluid Dynamics-II: Impulse-Momentum Principle; Moment of momentum equation; flow measurements, Venturimeter, Orificemeter, determination of coefficients of discharge, velocity and contraction and energy loss. Laminar Flow: Reynolds Experiment; Equation of motion for laminar flow through pipes; Flow between parallel plates; Kinetic energy and Momentum correction factors; Stokes law; Flow through porous media; Measurement of viscosity; Transition from laminar to turbulent flow.	4
Module-8	Boundary Layer Analysis: Boundary layer thicknesses; Boundary layer over a flat plate; Laminar boundary layer; Application of Von-Karman Integral Momentum Equation; Turbulent boundary layer; Laminar sub layer; Hydro-dynamically Smooth and rough boundaries; Local and average friction coefficient; Total drag; Boundary layer separation and its control.	4
Module-9	Flow Through Pipes: Nature of turbulent flow in pipes; Equation for velocity distribution over smooth and rough surfaces; Major and Minor energy losses; Darcy's Law; Resistance coefficient and its variation; Hydraulic gradient and total energy lines. Flow in sudden expansion, contraction, diffusers, bends, valves and siphons; Concept of equivalent length; Branched pipes; Pipes in series and parallel; Simple pipe networks.	6

Module-10	Flow Past Submerged Bodies: Drag and lift, Types of drag force, Drag on sphere, Cylinder and airfoil; Magnus effect.	4
Total No. of H	ours	40

Learning Outcomes:	 Understand the various properties of fluids and their influence on fluid motion and analyse a variety of problems in fluid statics and dynamics. Calculate the forces that act on submerged planes and curves. Identify and analyse various types of fluid flows. Apply the integral forms of the three fundamental laws of fluid mechanics to
	 turbulent and laminar flow through pipes and ducts in order to predict relevant pressures, velocities and forces. Draw simple hydraulic and energy gradient lines.

References

S.No.	Book/Author/ Publication	Year of Publication
		1 doneddon
1.	R K Bansal: Fluid Mechanics and Hydraulic Machines, laxmi publication	2000
2.	Modi and Seth: Fluid Mechanics and Fluid Machines	2002
3	V Gupta and S K Gupta, Fluid Mechanics and its Applications, Wiley eastern ltd.	2001

Course Code: BME-C356

Course Name: MATERIALS ENGINEERING LAB

MM: 50
Time: 2 Hr.

ESE: 35
L T P

0 0 2

LIST OF EXPERIMENTS

- 1. Specimen preparation for micro structural examination-cutting, grinding, polishing, etching.
- 2. Grain Size determination of a given specimen.
- 3. Comparative study of microstructures of different given specimens (mild steel, gray C.I., brass, cooper etc.)
- 4. Heat treatment experiments such as annealing, normalizing, quenching, case hardening and comparison of hardness before and after.
- 5. Material identification of say 50 common items kept in a box.
- 6. Faradays law of electrolysis experiment.
- 7. Study of corrosion and its effects.
- 8. Study of microstructure of welded component and HAZ. Macro & Micro examination.
- 9. Other tests such as shear, bend tests on UTM.
- 10. Hardness testing of given specimen using Rockwell and Vickers/Brinell testing machines.
- 11. Spring index testing on spring testing machine.
- 12. Fatigue testing on fatigue testing machine.

- 13. Torsion testing of a rod on torsion testing machine.
- 14. Study of non-destructive testing methods like magnetic flaw detector, ultrasonic flaw detector, eddy current testing machine, dye penetrant tests.
- 15. To conduct the Impact test (Izod / charpy) on the Impact testing machine and to find the impact strength.

NOTE

- 1. In practical examination the student shall be required to perform one experiment.
- 2. A teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- 5. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

Course Code: BME-C358

Course Name: ENGINEERING MECHANICS LAB

MM: 50
Time: 2 Hr.

L T P
Credit: 1

Credit: 1

LIST OF EXPERIMENTS

- 1. To determine the efficiency of a machines
- 2. To determine the mechanical advantage and efficiency of screw jack
- 3. To measure coefficient of friction of different surfaces
- 4. To study the forces acting on trusses
- 5. To study the moment of inertia of a flywheel
- 6. To study Lami's theorem using universal force table apparatus
- 7. To study the equilibrium of parallel forces simply supported beam reactions
- 8. To determine the velocity ratio, mechanical advantage and efficiency of worm and worm wheel.
- 9. To verify the parallelogram law of forces.
- 10. To verify the moment area theorem for slope and deflection of beam.
- 11. To study and verify the behavior of strutswith various end conditions.
- 12. To study the performance of differential axle and wheel and find its velocity ratio, efficiency and law of machine.
- 13. To study of forces in the members of jib crane.

Note:

- 1. Each student shall be required to perform one experiment in the practical examination.
- 2. A Teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- 5. Every student shall have to perform minimum eight experiments during the semester.
- 6. Any Experiment based on syllabus may be added by permission of Head / Dean.

Total No. of Hours

Course Name: FLUID MECHANICS LAB

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 35
LTP	Credit: 1
0 0 2	

Prerequisites:	NIL
Objectives:	1. To obtain resultant of various forces.
	2. To calculate support reactions through conditions of equilibrium for various structures.
	3. To understand role of friction in equilibrium problems.
	4. To know fundamental laws of machines and their applications to various engineering problems
Course	Mr. Yogesh Kumar
Coordinator	

Module	Course Content	No. of Hours		
Experiment-1	To determine the metacentric height of a ship model experimentally.	02		
Experiment-2	Experiment-2 To study the transition from laminar to turbulent flow and to determine the lower critical Reynolds number.			
Experiment-3	To verify the Bernoulli's theorem.	02		
Experiment-4	To calibrate an orifice meter and venturimeter and to study the variation of the coefficient of discharge with the Reynolds number.	02		
Experiment-5	To calibrate and to determine the coefficient of discharge for rectangular and triangular notches.	02		
Experiment-6	To determine the loss coefficients for the various pipe fittings.	02		
Experiment-7	To study the flow behavior in a pipe bend and to calibrate the pipe bend for discharge measurement	02		
Experiment-8	To measure the surface tension of a liquid.	02		
Experiment-9	To determine the coefficients of velocity, contraction and discharge of an orifice (or a mouth piece) of a given shape. To plot the flow net for a given model using the concept of electrical analogy	02		
Experiment-10	To verify Darcy's law and to find out the coefficient of permeability of the given medium	02		
Experiment-11	To study the variation of friction factor, 'f' for turbulent flow in smooth and rough commercial pipes	02		
Experiment-12	To verify the momentum equation.	02		

At the end of this course students will be able to: Understand the knowledge about the basic terminologies and will able to find out various conditions related to stability of floating bodies. Understand the knowledge about the fluid motion and will be able to distinguish between them based on Reynolds no. Apply Bernoulli's equation in flow measuring devices together with there calibration

GURUKULA KANGRI (DEEMED TO BE UNIVERSITY), HARIDWAR

Faculty of Engineering & Technology Mechanical Engineering B. Tech. Third Year Syllabus in accordance with AICTE Model Curriculum

B.Tech. III Year Semester – V

				Pe	riod	per	E	VALUA	ATION SCI	HEME		
S.NO.		COURSE	Course Name		week		SESSIONAL EXAM.			EXAM.	Credit	Subject
CODE CODE		DE OPTED	Course Name	L	T	P	CT	TA	TOTAL			TOTAL
	THEORY SUBJECTS											
1	BME- C511	PCC	Heat Transfer	3	1	0	20	10	30	70	4	100
2	BME- C512	PCC	Measurement & Metrology	3	0	0	20	10	30	70	3	100
3	BME- C513	PCC	Solid Mechanics	3	1	0	20	10	30	70	4	100
4	BME- P5XX	PEC	Program Elective-I	3	0	0	20	10	30	70	3	100
5	BME- O5XX	OEC	Open Elective-I	3	0	0	20	10	30	70	3	100
6	BME- M001	HSMC	Universal Human Values	3	0	0	20	10	30	70	0	100
			PRACTICAL / T	RAIN	IING	/PRO	JECT					
7	BME- C561	PCC Lab	Heat Transfer Lab	0	0	2	10	05	15	35	1	50
8	BME- C562		Measurement & Metrology Lab	0	0	2	10	05	15	35	1	50
9	BME- C570	PCC Lab	Project-I (Summer Training)	0	0	2	10	05	15	35	1	50
	TOTAL				4	6	150	75	225	525	20	750

For the Summer Training and Internship program done in summer break after IV semester examination, A certificate of completion to be submitted along with the report and presentation in the department. In case a student is unable to do an internship in some company, he may do any one extra online skill enhancement course

L-Lecture; T-Tutorial; P-Practical; CT-Cumulative Test; TA- Teacher Assessment; ESE End Semester Examination; BSC-Basic Science Course; ESC- Engineering Science Courses; PEC-Program Elective Course; SEC- Skill Enhancement Course; AECC- Ability Enhancement Compulsory Course; HSMC-Humanities, Social Science & Management Course

Grading & Grade Points: O(Outstanding)= 10; A+(Excellent)= 9; A(Very Good)= 8; B+(Good)= 7; B(Above Average)= 6; C(Average)= 5; P(Pass)= 4; F(Fail)= 0; Ab(Absent)= 0

Program Elective -I (Fifth semester)

BME-P521	Manufacturing System Design
BME-P522	Soft Computing
BME-P523	Advanced Thermodynamics
BME-P524	Machine Tool Design

Open Elective -I (Fifth semester)

BME-O531	Engineering Economy
BME-O532/BCE-C514	Cloud Computing
BME-O533	Automatic Control System
BME-O534	Composite Materials
BME-O535	Machine Learning

Course Code: BME-C511 Course Name: Heat Transfer

MM: 100		Sessional: 30
Time: 3		ESE: 70
Hr.		Credit : 4
LTP		
3 1 0		
Prerequisites:	Fundamental knowledge of Thermody	ynamics
Objectives:	 Basic Concepts of Heat Tran 	sfer
	2. Design and Rating of Heat ex	xchangers with and Without Phase Change.
	3. Design and Rating of Comp	act Heat Exchangers
Course	Mr. Mayank Pokhriyal	
Coordinat		
or		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction to Heat Transfer: Concepts of the mechanisms of heat flows: conduction, convection and radiation; effect of temperature on thermal conductivity of materials; introduction to combined heat transfer mechanism.	03
	Module-2	Conduction: One-dimensional general differential heat conduction equation in the rectangular, Cylindrical and spherical coordinate systems; initial and boundary conditions.	03
	Module-3	Steady State one-dimensional Heat conduction: Composite Systems in rectangular, cylindrical and spherical coordinates with and without energy generation; thermal resistance concept; Analogy between heat and electricity flow; thermal contact resistance; critical thickness of insulation.	03
UNIT-2	Module-4	Fins of uniform cross-sectional area; errors of measurement of temperature in thermometer wells.	02
	Module-5	Transient Conduction: Transient heat conduction Lumped capacitance method, Time constant Unsteady state heat conduction in one dimension only, Heisler charts.	04
UNIT-3	Module-6	Forced Convection: Basic concepts; hydrodynamic boundary layer; thermal boundary layer, flow over a flat plate; flow across a single cylinder and a sphere; flow inside ducts; empirical heat transfer relations; relation between fluid friction and heat transfer; liquid metal heat transfer.	05
	Module-7	Natural Convection: Physical mechanism of natural convection; buoyant force; empirical heat	05

		Transfer relations for natural convection over vertical planes and cylinders, horizontal plates and Cylinders, and sphere	
UNIT-4	Module-8	Thermal Radiation: Basic radiation concepts; radiation properties of surfaces; black body radiation laws; shape factor; black-body radiation exchange; Radiation exchange between diffuse non-black bodies in an enclosure; radiation shields; solar radiation	06
UNIT-5	Module-9	Heat Exchanger: Types of heat exchangers; fouling factors; overall heat transfer coefficient; Logarithmic mean temperature difference (LMTD) method; effectiveness-NTU method; compact heat exchangers.	05
	Module-10	Condensation and Boiling: Introduction to condensation phenomena; heat transfer relations for Laminar film condensation on vertical surfaces and on a horizontal tube; boiling modes pool boiling, curve, forced convective boiling.	04
Total No. o	of Hours	,	40

Learning	At the end of the course students are able to:
Outcomes:	1. To be able to understand various modes of heat transfer in solid liquid and
	gas.
	2. To be able to understand and apply general heat conduction equation in
	Cartesian, cylindrical and spherical co-ordinates system and their composite structure also.
	3. To be able to understand the heat flow in unsteady state condition.
	4. To understand and learn various concepts of forced convection, momentum
	equation and its solution for hydrodynamic boundary layer over a flat plate.
	5. To be able to understand the heat exchanger, types of heat exchanger and
	thermal radiation in black, grey and real surfaces. Planks distribution law,
	vein's law, Stephen', Boltzmann law, Kirchhoff's law, radiations shield and
	shape factor.
	6. Design double pipe heat exchanger, Shell and tube heat exchanger,
	finned tube and other compact heat exchangers.

CO1	<u>Define-</u> Concepts of the mechanisms of heat flows: conduction, convection and radiation, ntroduction to condensation phenomena
CO2	<u>Illustrate-</u> Fins of uniform cross-sectional area; errors of measurement of temperature in thermometer wells
CO3	<u>Categorize-</u> Types of heat exchangers
CO4	<u>Determin</u> e-overall heat transfer coefficient; Logarithmic mean temperature difference (LMTD) method; effectiveness NTU method
CO5	<u>Explain-</u> Basic radiation concepts; radiation properties of surfaces; the devices of intermittent motion, reversing and differential mechanisms
CO6	Prove-Analogy between heat and electricity flow; thermal contact resistance; critical thickness of insulation
CO7	<u>Choose-</u> hydrodynamic boundary layer; thermal boundary layer, flow over a flat plate; flow across a single cylinder and a sphere
CO8	Construct-One-dimensional general differential heat conduction equation in the rectangular
CO9	<u>Utilize-</u> boiling modes poolboiling, curve, forced convective boiling.
CO10	Select -Radiation exchange between diffuse non-black bodies in an enclosure; radiation shields;solar radiation

S. No.	Name of Authors /Books /Publisher	Year of Publicatio n
1.	Elements of Heat transfer by Bayazitouglu & Ozisik, McGraw-Hill Book Company. ISBN-0071001328	1998

2.	Heat Transfer By J.P. Holman, McGraw-Hill International edition. ISBN 0070586748	2004
3.	Schaum's outline of Heat Transfer by Pitts & Sisson McGraw-Hill International	2011
	edition	
	ISBN-9780071764292	
4.	Principles of Heat Transfer by Frank Kreith, McGraw-Hill Bo ok co. ISBN-	2017
	1305387104	

Course Name: Measurement & Metrology

irse Name: M	leasurement & Metrology			
MM: 100		Sessional: 30		
Time: 3		ESE: 70		
Hr.		Credit: 3		
LTP				
3 0 0				
Prerequisites:	Basic Knowledge of Metric and SI u	nit of physical quantities, Statistics.		
Objectives:	 This course provides standard methodology for inspection and also discusses the equipment required for the inspection process so as to see that the designer's specifications are met. To understand the statistical concepts in quality control and quality assurance and to appreciate the concepts of on-line and off-line quality control in today's Manufacturing, subsequently applying these concepts to various situations through problem solving. 			
Course	Mr. Mayank Pokhriyal			
Coordinat				
or				
NOTE:	shall contain of ten (10) short answer shall be required to attempt any five long answer type questions of ten (10)	two sections (Section-A and Section-B). Section-A er type questions of six (06) mark each and student e (05) questions. Section-B shall contain eight (08) marks each and student shall be required to attempt e uniformly distributed from the entire syllabus		

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Introduction to Metrology and its relevance, importance of dimensional measurement, line and end standards. Need of inspection, sources of errors, basic types of errors precision and accuracy. Method of estimating accuracy and precision, standard and their evolutions. Simple measurement tools: Rules, calipers, height gauges, micrometers, depth gauge dial indicator, slip gauges, sine bar.	08
UNIT-2	Module-2	Limits, fits and tolerances- interchangeability, selective assembly, limits of size, types of fits, Indian standard specifications for the design fits. Limit gauging- Taylor's principles of limit gauging, design of gauges, classification of gauges. Interferometers: Types of light sources and interferometers, Types of scale and grading, optical flats.	08
UNIT-3	Module-3	Metrology of Screw Thread Gear Metrology: Gear error, Gear measurement, Gear Tooth Vernier; Profile Projector, Tool markers microscope. Advancements in Metrology: Co- ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.	08
		Metrology and Inspection: Standards of linear measurement, line and end standards.	04
	Module-7	Linear and angular measurements devices and systems Comparators: Sigma, Johansson's	04

		Microkrator. Limit gauges classification, Taylor's Principle of Gauge Design.	
UNIT-5	Module-8	Measurement of Geometric Forms: Straightness, flatness, roundness. Tool makers microscope, profile project autocollimator. Interferometry: principle and use of interferometry, optical flat. Measurement of screw threads and gears, Surface texture: quantitative evaluation of surface roughness and its measurement.	08
Total No.	of Hours		40

Learning	At the end of the course students are able to:		
Outcomes:	1. Identify techniques to minimize the errors in measurement		
	2. Identify methods and devices for measurement of length, angle, and gear and		
	thread parameters, surface roughness and geometric features of parts.		
	3. Choose limits for plug and ring gauges.		
	4. Explain methods of measurement in modern machineries		
	5. Select quality control techniques and its applications		
	6. Plot quality control charts and suggest measures to improve the quality of		
	product and reduce cost using Statistical tools.		

Course Outcomes

CO1: Explain Importance of dimensional measurement, line and end standards, Taylor's principles of limit. Interferometry: principle and use of interferometry, Measurement of Geometric Forms, Gear Tooth Vernier; Profile Projector, Tool makers microscope. Advancements in Metrology: Machine, Universal Measuring Machine, Laser in Metrology

CO2: Define Precision and accuracy, interchangeability, Gear error, Comparators, Sigma, Linear and angular measurements devices and systems.

CO3: How Estimating accuracy and precision, Gear measurement Co- ordinate Measuring, Measurement of screw threads and gears,

CO4:Identify Rules, calipers, height gauges, micrometers, depth gauge dial indicator, slip gauges, sine bar. Handling, Material Handling, equipment's.

CO5: Classify Basic types of errors, types of fits, Types of light sources and interferometers, grading, optical flats.

CO6: Analyze quantitative evaluation of surface roughness and its measurement. Limit gauging, Simple measurement tools,: Straightness, flatness, roundness.

S	Name of Authors /Books /Publisher	Year of Publicatio n
1.	R. K. Jain, Engineering Metrology, Khanna Publications, 17th edition. ISBN-9788174091536	1975
2.	V. A. Kulkarni, A. K. Bewoor, Metrology & Measurements, Tata McGraw Hill Co. Ltd., 1st edition. ISBN-9788126519071	2009
3.	Gupta. I.C., "Engineering Metrology", Dhanpat Rai Publications. ISBN-8189928457	2005

Course Code: BME-C513 Course Name: Solid Mechanics

MM: 100		Sessional: 30	
Time: 3		ESE: 70	
Hr.		Credit: 4	
LTP			
3 1 0			
Prerequisites	Basics of Mechanical Engineering &	Strength of Materials.	
:			
Objectives:	1. The objective is to present the mathematical and physical principles in		
	understanding the linear con	ntinuum behavior of solids.	
Course	Dr. Jasbir Singh		
Coordinat			
or			
NOTE:	The question paper shall consist of t	wo sections (Section-A and Section-B). Section-A	
		" tyme assertions of six (OE) moule each and student	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction to Cartesian tensors, Strains Concept of strain, derivation of small strain tensor and compatibility, Stress Derivation of Cauchy relations and equilibrium and symmetry equations, principal stresses and directions.	08
UNIT-2	Module-2	Constitutive equations: Generalized Hooke's law, Linear elasticity, Material symmetry; Boundary Value Problems: concepts of uniqueness and superposition.	04
	Module-3	Deflection of beam: Relation between slope deflection and radius of curvature, solution of beam deflection, problem by Macaulay's method, Direct integration method, Method of super position, Moment Area Method.	04
UNIT-3	Module-4	Columns & Struts: Column under axial load, concept of instability and buckling, slenderness ratio, derivation of Eulers formulae for the elastic buckling load, Eulers, Rankine, Gordom's formulae Johnson's empirical formula for axial loading columns and their applications.	08
UNIT-4	Module-5	Plane stress and plane strain problems, introduction to governing equations in cylindrical and spherical coordinates, axisymmetric problems, application to thick cylinders, rotating discs.	05
	Module-6	Deformation in circular shaft due to torsion, Basic assumption, Torsion equation, Torsion of non-circular cross-sections.	03
UNIT-5	Module-7	Springs: Stresses in open coiled helical spring subjected to axial loads and twisting couples, leaf springs, flat spiral springs, concentric springs.	08
Total No. o	of Hours		40

Learning	Upon completion of this course, students will be able to:
Outcomes:	CO1: Explain the concept of strain, strain tensor, principal stresses and directions.
	CO2: How to determine the deflection of beam and solve the boundary value problems.
	CO3: Compare the critical load obtained by using Eulers, Rankine, Gordom's formulae
	and Johnson's empirical formula for axial loading columns.
	CO4: Classify the plane stress and plane strain problems

CO5: Solve The deformation in circular and non-circular cross-sections due to torsion. CO6: Analyze the stresses in open coiled helical spring and leaf spring.

Suggested books:

S .	Name of Authors /Books /Publisher	Year of Publicatio
N o.		n
1.	G. T. Mase, R. E. Smelser and G. E. Mase, Continuum Mechanics for Engineers, Third Edition, CRC Press.	2004
2.	Y. C. Fung, Foundations of Solid Mechanics, Prentice Hall International.	1965
3.	Lawrence. E. Malvern, Introduction to Mechanics of a Continuous Medium, Prentice Hall international.	1969
4.	Bedi, D. S., Strength of Materials, Khanna Publishing, Delhi	2002

Course Code: BME-M001

Course Name: Universal Human Values

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

MM: 100 Time: 3 Hr. L T P 3 0 0	Sessional: 30 ESE: 70 Credit : 0	
Prerequisites:	Moral Education	
Objectives:	The objective of the course is four fold: 1. Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence. 2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence. 3. Strengthening of self-reflection. 4. Development of commitment and courage to act.	
Course Coordinator	Mr. Rishi Kumar Prajapati	

UNIT	Module	Course Content	No. of
			Hours
UNIT-1	Module-1	Course Introduction - Need, Basic Guidelines, Content and Process for Value Education. Purpose and motivation for the course, recapitulation from Universal Human Values-I Self-Exploration— what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration Continuous	5
		Happiness and Prosperity- A look at basic Human Aspirations Priority Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.	

	Module-2	Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and coexistence) rather than as arbitrariness in choice based on liking disliking.	3
UNIT-2	Module-3	Understanding Harmony in the Human Being - Harmony	8
		in Myself!	
		Understanding human being as a co-existence of the sentient 'I'& the Material 'Body'. Understanding the needs of Self ('I')	
		and 'Body' - happiness and physical facility Understanding the	
		Body as an instrument of 'I' (I being the doer, seer and enjoyer)	
		Understanding the characteristics and activities of 'I' and	
		harmony in 'I' Understanding the harmony of I with the Body:	
		Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail Programs to ensure Sanyam	
		and Health.Include practice sessions to discuss the role others	
		have played in making material goods available to me.	
		Identifying from one's own life. Differentiate between	
		prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.	
UNIT-3	Module-4	Understanding Harmony in the Family and Society-	5
		Harmony in Human- Human Relationship Understanding	
		values in human-human relationship; meaning of Justice (nine	
		universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as	
		the foundational values of relationship. Understanding the	
		meaning of Trust; Difference between intention &	
		competence. Understanding the meaning of Respect,	
		Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in	
		the society (society being an extension of family): Resolution,	
		Prosperity, fearlessness (trust) and co-existence as	
		comprehensive Human Goals, Visualizing a universal	
		harmonious order in society- Undivided Society, Universal	
	Module-5	Order- from family to world family. Include practice sessions to reflect on relationships in family,	3
		hostel and institute as extended family, real life examples,	
		teacher-student relationship, goal of education etc. Gratitude	
		as a universal value in relationships. Discuss with scenarios.	
UNIT-4	Module-6	Elicit examples from students' lives. Understanding Harmony in the Nature and Existence - Whole	5
		existence as Coexistence. Understanding the harmony in the	
		Nature, Interconnectedness and mutual fulfilment among the	
		four orders of nature-recyclability and self-regulation in nature. Understanding Existence as Co-existence of mutually	
		interacting units in all-	

	1		
		pervasive space. Holistic perception of harmony at all	
		levels of existence	
	Module-7	Include practice sessions to discuss human being as cause of	3
		imbalance in nature (film "Home" can be used), pollution,	
		depletion of resources and role of technology etc.	
UNIT-5	Module-8	Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems. Case studies of typical holistic technologies, management models and production systems. Strategy for transition from the present state to Universal Human Order: At the level of individual: as socially and ecologically responsible engineers, technologists and managers. At the level of society: as mutually enriching institutions and organizations. Sum up Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc	8
Total No. of	Hours	1 **	40
1 0tai 140, 01	110015		40

Course	Name: Universal Human Value
Course	Code: BME-M001
CO1	Understand and analyze the essentials of human values and skills, self-exploration, happiness and prosperity.
CO2	Evaluate coexistence of the "I" with the body.
CO3	Identify and evaluate the role of harmony in family, society and universal order.
CO4	Understand and associate the holistic perception of harmony at all levels of existence.
CO5	Develop appropriate technologies and management patterns to create harmony in professional and personal lives.

S. No.	Name of Authors /Books /Publisher	Year of Publication
1	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi,	2010
2	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak,	1999
3	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi,	2004

Course Name: Heat Transfer Lab

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 30
LTP	Credit: 1
0 02	

Prerequisites:	Fundamental knowledge of Thermodynamics.	
Objectives:	To impart practical knowledge on heat transfer, mass transfer in engineering systems.	
	2. To do the experiments related to their subjects like thermodynamics, thermal engineering, heat and mass transfer concepts.	
Course Coordinator	Mr. Mayank Pokhriyal	

Module	Course Content	No. of Hours
Experiment-1	Conduction - Composite wall experiment	02
Experiment-2	Conduction - Composite cylinder experiment	02
Experiment-3	Convection - Pool boiling experiment	02
Experiment-4	Convection - Experiment on heat transfer from tube-natural convection.	02
Experiment-5	Convection - Heat Pipe experiment.	02
Experiment-6	Convection - Heat transfer through fin-natural convection.	02
Experiment-7	Convection - Heat transfer through tube/fin-forced convection.	02
Experiment-8	Any experiment - Such as on Stefen's Law, on radiation determination of emissivity, etc.	02
Experiment-9	Any experiment - Such as on solar collector, etc. on radiation	02
Experiment-10	Heat Exchanger - Parallel flow experiment	02
Experiment-11	Heat Exchanger - Counter flow experiment	02
Experiment-12	Any other suitable experiment such as on critical insulation thickness.	02
Experiment-13	Conduction - Determination of thermal conductivity of fluids.	02
Experiment-14	Conduction - Thermal Contact Resistance Effect.	02
	Total	

COI	Experiment with-Composite wall, Composite Cylinder Experiment.
CO2	Explain-on heat transfer from tube- natural convection
CO3	Illustrate-Heat Transfer through fin-natural convection
CO4	Compare-on heat transfer through tube/fin –forced convection
CO5	Determine-Determination of thermal conductivity of fluid.
CO6	Identify-parallel flow and counter flow.
CO7	Select- such as on solar collector o radiation, Stefen's laws on radiation.

NOTE:

- Apart from the above practical listed any eight practical can be conducted by each student.
- Each student shall be required to perform one experiment in the practical examination.
- A Teacher shall be assigned 20 students for daily practical work in laboratory.
- No batch for practical class shall consist of more than 20 students.
- The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- > Every student shall have to perform minimum eight experiments

Suggested books:

S. No.	Name of Authors /Books /Publisher	Year of Publication
1	Fundamentals of Momentum, Heat and Mass Transfer by James R.Welty; John Wiley & Sons(Pvt).Ltd. ISBN: 978-1-119-49541-3	2019
2 .	Heat Transfer, by Vijay Gupta, New Age International (P) Ltd. Publishers ISBN10 8122408001	2016
3	Heat Transfer, by Y.V.C. Rao, University Press., ISBN-8173713847	2001

Course Code: BME-C562

Course Name: Measurement & Metrology Lab

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 30
LTP	Credit: 1
0 02	

Prerequisites:	Study of Measurement by different tools.		
Objectives:	1 Measurement of linear and angular dimensions		
	2. To perform various alignment tests on machine tools		
	3. Estimation of surface roughness		
	4. Measurement of pressure, flow, speed, displacement and temperature.		
Course	Mr. Mayank Pokhriyal		
Coordinator			

Module	Course Content	No. of Hours
Experiment-1	Study & working of simple measuring instruments. Like Vernier calipers, micrometer, tachometer etc.	02
Experiment-2	Measurement of effective diameter of a screw thread using 3-wire method.	02
Experiment-3	Measurement of angle using sine bar & slip gauges.	02
Experiment-4	Study of angular measurement using level protector	02
Experiment-5	Pressure measuring experiment	02
Experiment-6	Temperature measurement experiment	02
Experiment-7	Measurement of the surface roughness.	02

Experiment-8	Force measuring experiment.	02
Total No. of Hours		

Learning	At the end of the course students are able to:	
Outcomes:	1 .Demonstrate the use of instruments for measuring linear (internal and external),	
	angular dimensions and surface roughness.	
	2. Perform alignment tests on various machine tools.	
	3. Demonstrate the use of instruments for measuring pressure, flow, speed,	
	displacement and temperature.	

Suggested books:

S.No.	Name of Authors /Books /Publisher	Year of Publication
1.	Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications.	2005
2.	Jain R.K. "Engineering Metrology", Khanna Publishers.	2009
3.	Doeblein E.O., "Measurement Systems, Application Design", McGraw Hill.	1990
4.	Kumar D.S., "Mechanical Measurements and Control", Metropolitan, N. Delhi.	2005

Course Code: BME-C570

Course Name: Project (Summer Training)

MM: 50	Sessional:15
Time: 2Hr.	ESE: 35
LTP	Credit: 1
0 02	

Prerequisites:	Fundamental Knowledge of Different Machines.	
Objectives:	 The objective of the summer training and internship program on recent/ latest technologies is to make students acquire knowledge of latest technologies and also to work under the guidance of industry professionals. Students will develop presentation, listening and communication skills Students will develop Argumentative Skills and Critical Thinking. Course Outcomes: Students will gain knowledge of the current and upcoming technologies. Students will be able to look into the working environment in the industry. 	
Course Coordinator	Dr. Sanjeev Kumar Lambha	

Students will develop better communication skills and critical thinking. The presentation will be held for the Summer Training and Internship program done in summer break on recent/ latest technologies after IV semester examination, a certificate of completion to be submitted along with the presentation in the department. In case, any student is unable to do an internship in some company, he is allowed to do any one extra online skill enhancement course, for which the course completion certificate along with the presentation has to be submitted in the department.

Learning	1. Students will gain knowledge of the current and upcoming technologies.	
Outcomes:	2. Students will be able to look into the working environment in the industry	
	3. Students will develop better communication skills and critical thinking.	

Program Elective -I (Fifth semester)

Course Code: BME-P521

Course Name: Manufacturing System Design

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	
Objectives:	The objective is to introduce students to the basics of manufacturing system modelling and design.
Course Coordinator	Mr. Praveen Kumar Pandey

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A	
	shall contain of ten (10) short answer type questions of six (06) mark each and student	
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)	
	long answer type questions of ten (10) marks each and student shall be required to attempt	
	any four questions. Questions shall be uniformly distributed from the entire syllabus	

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction to the course and overview of manufacturing systems	04
	Module-2	Manufacturing strategy, Manufacturing flexibility, Manufacturing complexity	04
UNIT-2	Module-3	Basic decision making models, Investment decisions under uncertainty using lifecycle costing models	04
UNIT-3	Module-4	System reliability and maintenance models, Economic design of quality control plans.	08
UNIT-4	Module-5	Single and mixed model assembly lines, Shop floor scheduling algorithms, Economic lot sizing, Inventory control models	10
UNIT-5	Module-6	Performance modelling of production lines, Production control mechanisms like Kanban, CONWIP and PLOCA, Futuristic approaches for manufacturing system control	10
Total No. of Hours		40	

Learning Outcomes:	On completing the course, students should be able to
Outcomes.	CO1: Understand the various strategies involved to overcome the complexities of a manufacturing system.
	CO2: Apply decision models to build an efficient manufacturing system.
	<u>CO3:</u> Sketch the projections of solids and development of surfaces.
	CO4: Demonstrate the shop floor scheduled algorithm with single and mixed modelled assembly lines.
	<u>CO5:</u> Make use of control mechanisms like Kanban, CONWIP, PLOCA and other futuristic approaches to generate a flexible manufacturing system.

S. No.	Name of Authors /Books /Publisher	Year of Publicatio n
1.	Miltenburg J., "Manufacturing Strategy: How to formulate and Implement a winning plan", 2 nd Ed, Taylor & Francis, ISBN 9781138084001	2005
2.	James L. Riggs J. L., Bedworth D. D., Randhawa S. U., " <i>Engineering Economics</i> ", 4 th Ed, Tata McGraw Hill, ISBN-0079122485	2004
3.	Ebileng C. E., "An Introduction to Reliability and Maintainability Engineering", McGraw Hill India, ISBN-9780070421387	2000
4.	Askin R. G., Goldberg J.B., " <i>Design and Analysis of Lean Production Systems</i> ", John Wiley & Sons(Asia), ISBN- 978-0-471-11593-9	2003

Course Code: BME-P522

Course Name: Soft Computing Techniques

ise maine. Bu	nt Computing Technique		
MM: 100		Sessional: 30	
Time: 3 Hr.		ESE: 70	
LTP		Credit: 3	
3 00			
Prerequisites:	Programming Skills in C , C + , M	atlab and mathematics	
Objectives:	 Understand Soft Comput 	ing concepts, technologies, and applications	
ŭ		g principle of soft computing with its usage in various	
	3. Understand different soft computing tools to solve real life problems.		
Course Coordinator Dr. Jasbir Singh, Mr. Mayank Pokhriyal		hriyal	
NOTE: The question paper shall consist of two sections (Section-A and Section-B). Section			
	shall contain of ten (10) short ans	swer type questions of six (06) mark each and student	
	five (05) questions. Section-B shall contain eight (08)		
	long answer type questions of ten	(10) marks each and student shall be required to attempt l be uniformly distributed from the entire syllabus	

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Introduction to soft computing, Introduction to biological and artificial neural networks, Introduction to fuzzy sets and fuzzy logic systems	05
UNIT-2	Module-2	Artificial neural networks and applications: Different artificial neural network models, learning in artificial neural networks, neural network applications in control systems	08
UNIT-3	Module-3	Fuzzy systems and applications: Fuzzy sets, fuzzy reasoning, fuzzy interference systems, fuzzy control, fuzzy clustering, application of fuzzy systems.	10
UNIT-4	Module-4	Neuro-fuzzy systems: Neuro-fuzzy modelling, Neuro-fuzzy control	04
	Module-5	Genetic Algorithms: Simple GA, Crossover and mutation, genetic algorithms, in search and optimization.	05
UNIT-5	Module-6	Applications: Pattern Recognitions, Image processing, Biological sequence alignment and drug design, Robotics and sensors, Information retrieval systems, Share market analysis, Natural language processing	08

Total No. of Ho	Total No. of Hours		
Learning	Learning Upon successful completion of this course students should be able to:		
Outcomes:	Outcomes: 1. Develop application on different soft computing techniques like Fuzzy Neural network 2. Implement Neuro-Fuzzy and Neuro-Fuzz-GA expert system.		

S. No.	Name of Authors /Books /Publisher	Year of Publicatio
		n
1.	Konar, "A computational intelligence [i.e. intelligence]: principles, techniques and applications", I st Ed, Springer, ISBN- 3-540-20898-4	2005
2.	Friedman M. & Kandel A., "Introduction to pattern recognition: statistical, structural, neural and fuzzy logic approaches", 2 nd vol., World Scientific, ISBN-978-981-02-3312-9	1999
3.	Jang J. S. R., Sun C. T. & Mizutani E., "Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence", Prantice Hall, ISBN-0-13-261066-3	1997
4.	Mitchell M., "An introduction to genetic algorithm", 2 nd Ed, MIT Press, ISBN-9780262631853	1998
5.	Ross T. J., " <i>Fuzzy logic with engineering applications</i> ", <i>2</i> nd Ed, John Wiley & Sons, ISBN- 0-470-86075-8	2004

Course Code: BME-P523

Course Name: Advanced Engineering Thermodynamics

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Fundamental Knowledge of Basic Thermodynamics Engineering.	
Objectives:	This course deals with the advance level of Thermodynamics. In this student will learn about entropy generation. Reactive system and its application in Thermodynamics.	
Course Dr. Shobhit Srivastava Coordinat or		
NOTE:	TE: The question paper shall consist of two sections (Section-A and Section-B). Section-A	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Review of laws of thermodynamics: Energy concepts for closed and open systems.	06
UNIT-2	Module-2	Entropy considerations: Minimization of entropy generation principle and thermodynamic optimization.	08
UNIT-3	Module-3	Energy: Energy analysis of thermal systems and plants, Thermo-economic applications.	08
UNIT-4	Module-4	Phase transition: Equations of state, Multi-component and multi-phase system, Reactive systems.	08
UNIT-5	Module-5	Kinetic theory of gases, Distribution of molecular velocities and energy, transport properties of gases	06

	Module-6	Principles of irreversible thermodynamics and applications.	04
Total No. of Hours		40	

Learning	After the completion of this course, student will have a good understanding of entropy,
Outcomes:	entropy generation systems, reactive system, kinetic theory of gases and applications.

S. No.	Name of Authors /Books /Publisher	Year of Publicatio
		n
1.	Bejan A., "Advanced engineering thermodynamics", 3 rd Ed, John Wiley &	2006
	Sons, ISBN-978-0-471-67763-5	
2.	Bejan A., "Entropy generation minimization: the method of	1995
	thermodynamic optimization of finite-size systems and finite time	
	processes", 1st Ed, CRC	
	Press, ISBN-9781498782920	
3.	Annamalai K. & Puri I.K., "Advanced thermodynamics engineering", 2nd Ed,	2011
	CRC Press, ISBN- 9781498768412	
4.	Wark K., "Advanced thermodynamics for engineers", 1st Ed, Mc-Graw Hill,	1994
	ISBN-9780070682924	
5.	Winterbone D. E., "Advanced thermodynamics for engineers", 2 nd Ed,	2015
	Arnold, ISBN- 9780080999838	

Course Code: BME-P524

Course Name: Machine Tool Design

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Fundamental Knowledge of Manufacturing Science.		
Objectives:	1. To gain the knowledge of different drives and mechanisms used in machine tools.		
	2. To gain the knowledge of design of gear boxes & feed boxes used in machine tools.		
	3. To gain the knowledge of design of structures, guide ways, spindles of machine tools.		
	4. To gain the knowledge of various control systems used in machine tools.		
Course Coordinator	Dr. Sanjeev Kumar Lambha		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Developments is machine tools, types of machine tools surface, profits and paths Produced by machine tools. Features of construction and operations of basic machine tools e.g. lathe, drill, milling shapes and planers, grinding machine etc.	05
	Module-2	General requirement of machine tool design. Machine tool design process. Tool wear, force Analysis.	05

UNIT-2	Module-3	Machine Tools Drives: Classification of machine tool drives, group Vs individual drives, Selection of electric motor, A brief review of the elements of mechanical transmission e.g. gear, belt and chain drives, slider-crank mechanism, cam mechanism, nut & Screw transmission, Devices for intermittent motion, reversing & differential mechanisms	03
	Module-4	Couplings and clutches Elements of hydraulic transmission system. e.g. pumps, cylinder, directional control valves, pressure valves etc. Fundamentals of Kinematics structure of machine tools.	06
UNIT-3 Module-5		Regulation of Speed and Feed Rates: Laws of stepped regulation, selection of range ratio, standard progression ratio, selection of best possible structural diagram, speed chart, Design of feed box.	03
	Module-6	Developing gearing diagrams. Stepless regulation of speed and feed in machine tool, speed and feed control.	04
UNIT-4 Module-7		Design of Machine Tool Structure: Requirements and design criteria for machine tool structures, selection of material Basic design procedure for machine tool structures, design of bed, column and housing, Model technique in design. Design of guideways and power screws.	03
	Module-8	Basic guideway profiles, Designing guideway for stiffness a wear resistance, hydrostatic and antifriction grandways. Design of sliding friction power Screws. Design of spindlier & spindle supports. Layout of bearings, selection of bearings for machine tools	06
UNIT-5	Module-9	Dynamics of Machine Tools: General procedure for assessing the dynamic stability of cutting process, closed loop system, chatter in machine tools. Control S _y stems: Functions, requirements &types of machine tool controls, controls for speed & feed change. Automatic and manual Controls. Basics of numerical controls. Machine tool testing.	05
Total No. o	of Hours		40

Learning	CO1: Understand the basics motion involved in a machine tool with tool geometry of			
Outcomes:	different operations.			
	CO2: Understand the different types of machine tool drives and mechanisms used in			
	machine tools.			
	CO3: Design different types of speed and feed drives.			
	CO4: Design the machine tool structures.			
	<u>CO5:</u> Apply different control strategies as per the requirements of machine tool operations.			

S. No.	Name of Authors /Books /Publisher	Year of Publicatio n
1	N.K. Mehta, Machine Tools Design & Numerical Controls, T.M.H. New Delhi.	2012
•	ISBN-10-9781259004575	
2	S.K. Basu, Design of Machine Tools ,Allied Publishers. ISBN-10-8120417771	2014
	- Company of the comp	

3	Bhattacharya A and Sen.G.C, Principles of Machine Tools, New Central	2009
•	Book Agency. ISBN-10-8173811555	

Open Elective -I (Fifth semester)

Course Code: BME-O531

Course Name: Engineering Economy

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Analysis of Market demand and Survey.	
Objectives: 1. Emphasizes the systematic evaluation of the costs and benefits associated with proposed technical projects.		
	2. The student will be exposed to the concepts of the "time value of money" and the methods of discounted cash flow.	
	3. Students are prepared to make decisions regarding money as capital within a technological or engineering environment	
Course Coordinat or	Mr. Rishi Kumar Prajapati	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Nature and Purpose of Engineering Economics, Economic Decisions, Role of engineers in Business, Large Scale Engineering Projects, Types of Strategic Engineering. Understanding financial statements: The balance sheet, the income statement, the cash flow statement, The fund flow statement using ratios to make business decisions.	08
UNIT-2	Module-2	Demand Analysis: Meaning of Demand, Types of demand, and Determinants of demand.	04
	Module-3	Elasticity of Demand, Demand Forecasting.	04
UNIT-3	Module-4	Production Function: Input output relationship, Production Function, Least cost combination of Inputs, Returns to scale, Managerial uses of production functions, Economies of scale.	08
UNIT-4	Module-5	Cost Analysis and Market Structure: General cost terms, Classification of costs, Cost concepts Relevant to decision making, Break Even analysis, Cost Volume Profit Analysis.	05
	Module-6	Introduction of different market structures- Perfect competition, Monopoly, Monotheistic competition, Price discrimination, Oligopoly.	03

UNIT-5	Module-7	Depreciation: Introduction, Straight line method of depreciation, declining balance method of depreciation-sum of the years digits method of depreciation, sinking fund method of depreciation/Annuity method of depreciation, service output method of depreciation-Evaluation of public alternatives - introduction, Examples, Inflation adjusted decisions -procedure to adjust inflation, Examples on comparison of alternatives and determination of economic life of asset.	08
Total No. of Hours		40	

Learnin g Outcom	Describe the role of economics in the decision making process and perform calculations in regard to interest formulas The invest the Procest converted of feture worth converted to the Procest formula.
es:	 Estimate the Present, annual and future worth comparisons for cash flows Calculate the rate of return, depreciation charges and income taxes Enumerate different cost entities in estimation and costing Explain the importance of finance functions, financial ratios and solve related problems
	6. Explain the elements of budgeting and bench marking •

S N	Name of Authors /Books /Publisher	Year of Publication
•		
1.	Chan S. Park, Contemporary Engineering Economics, Prentice Hall (3/e) 2002. ISBN 978-0-13-277542-7	2002
2.	Mote VL and Paul Samuel, Managerial Economics Concepts and Cases. ISBN-10-0070965188	2017
3.	K.K. Dewett, "Modern Economics Theory, 1997, S. Chand & Co., New Delhi. ISBN-10-8121924634	1997

Course Code: BME-O532

Course Name: Cloud Computing

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	
Objectives:	The course has following objectives: 1 To understand the concepts of Cloud Computing. 2 To learn Taxonomy of Virtualization Techniques. 3 To learn Cloud Computing Architecture. 4 To acquire knowledge on Aneka Cloud Application Platform. 5 To learn Industry Cloud Platforms.
Course Coordinator	Dr. Mayank Agarwal, Dr. Nishant Kumar
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Overview of cloud computing: What is a cloud, Definition of cloud, Characteristics of cloud, why use clouds, how clouds are changing, driving factors towards cloud, Comparing grid with cloud, Public clouds (commercial)	7
UNIT-2	Module-2	Cloud computing concepts: Concepts of cloud computing, Cloud computing leverages the Internet, Positioning cloud to a grid infrastructure, Elasticity and scalability, Virtualization, Characteristics of virtualization, Benefits of virtualization, Virtualization in cloud computing, Hypervisors, Multitenancy, Types of tenancy, Application programming interfaces (API), Billing and metering of services, Management, tooling, and automation in cloud computing.	7
UNIT-3	Module-3	Cloud service delivery: Cloud service, Cloud service model architectures, Infrastructure as a service (IaaS) architecture, Infrastructure as a service (IaaS) details, Platform as a service (PaaS) architecture, Platform as a service (PaaS) details, Platform as a service (PaaS), Examples of PaaS software, Software as a service (SaaS) architecture, Software as a service (SaaS) details, Examples of SaaS applications, Trade-off in cost to install versus, Common cloud management platform reference architecture: Architecture overview diagram, Common cloud management platform, Database as a Service - Monitoring as a Service – Communication as services.	7
UNIT-4	Module-4	Cloud deployment scenarios: Cloud deployment models, Public clouds, Hybrid clouds, Community, Virtual private clouds, Vertical and special purpose, Migration paths for cloud, Selection criteria for cloud deployment, Case study example: AWS Platform. Virtualization for Cloud Need for Virtualization – Pros and cons of Virtualization – Types of Virtualization –System Vm, Process VM, Virtual Machine monitor – Virtual machine properties - Interpretation and binary translation, HLL VM - Hypervisors – Xen, KVM, VMWare, Virtual Box, Hyper-V	6
UNIT-5	Module-5	Security in cloud computing: Cloud security reference model, how security gets integrated, Cloud security, understanding security risks, Principal security dangers to cloud computing, Data corruption or loss, User account and service hijacking, Steps to reduce cloud security breaches.	6
	Module-6	Classification of Cloud Implementations: Amazon Web Services, The Elastic Compute Cloud (EC2). The Simple Storage Service (S3), The Simple Queuing Services (SQS), Google AppEngine - PaaS, Windows Azure; Aneka, Hadoop, A Comparison of Cloud Computing Platforms	7
Total No. o	of Hours		40

Learning	At the end of this course student will be able to:
Outcomes:	1 Understand the concept of virtualization and how this has enabled
	the development of
	2 Cloud Computing
	3 Know the fundamentals of cloud, cloud Architectures and types of
	services in cloud
	4 Understand scaling, cloud security and disaster management
	5 Design different Applications in cloud
	6 Ability to use AWS/IBM Cloud/Google cloud

S.	Name of Authors /Books /Publisher	
No.		Publication
1.	Buyya Rajkumar, " <i>Practices and paradigms in cloud computing</i> ", 1 st Ed, Wiley, ISBN- 978-8126541256	2013
2.	Miller Michael, " <i>Cloud Computing</i> ", 1st Ed, Que Publishing, ISBN-978-0789738035	2008
3.	Jasm Kris, " <i>Cloud computing</i> ", 1 st Ed, Jones and Barret India, ISBN-978-1449647391	2012
4.	Velte Anthony, Velte Toby and Elsenpeter Robert, " <i>Cloud Computing: A practical approach</i> ", 1st Ed, Tata McGraw Hill, ISBN-978-0070683518	2009
5.	Hurwitz Judith, Bllor Robin, Kaufman Marcia and Halper F, " <i>Cloud computing for dummies</i> ", 1st Ed, Wiley, ISBN-978-8126524877	2009

Course Code: BME-O533

Course Name: Automatic Control System

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	
Objectives:	The course has following objectives: 1. To introduce the fundamentals of modeling, analysis and response of control systems in continuous and discrete data systems. 2. To familiarize students with classical and modern control systems including non-
	linear systems.
Course Coordinator	Mr. Gajendra Singh Rawat
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Control System: Open loop & closed control; servomechanism, Physical examples. Transfer Functions, Block diagram algebra, Signal flow graph, Mason's gain formula Reduction of parameter variation and effects of disturbance by using negative feedback.	7
UNIT-2	Module-2	Time Response Analysis: Standard test signals, time response of first and second order systems, time response specifications, steady state errors and error constants Design specifications of second order systems: Derivative error, derivative output, integral error and PID compensations, design considerations for higher order systems, performance indices	7
UNIT-3	Module-3	Control System Components: Constructional and working concept of ac servomotor, synchros and stepper motor. Stability and Algebraic Criteria: Concept of stability and necessary conditions, Routh- Hurwitz criteria and limitations. Root Locus Technique: The root locus concepts, construction of root loci.	7

UNIT-4	Module-4	Frequency Response Analysis: Frequency response, correlation between time and frequency responses, polar and inverse polar plots, Bode plots. Stability in Frequency Domain: Nyquist stability criterion, assessment of relative stability: gain margin and phase margin, constant M&N circles.	6
UNIT-5	Module-5	Introduction to Design: The design problem and preliminary considerations lead, lag and lead-lag networks, design of closed loop systems using compensation techniques in time domain and frequency domain	6
	Module-6	Review of State Variable Technique: Review of state variable technique, conversion of state- variable model to transfer function model and vice- versa, diagonalization, Controllability and observability and their testing	7
Total No. of Hours			40

Learning	At the end of this course student will be able to:
Outcomes:	Understand the general concept of a system and classify systems into different types and represent a system using different techniques like block diagram, signal flow graph.
2. Develop transfer function model of mechanical, electrical, thermal, fluid sy and different control system components like servomotors, synchronous, potentiometer, Tacho-generators etc.	
	3. Analyze system response and evaluate error dynamics in time domain.
	4. Determine system stability using Routh-Hurtwitz (RH) criteria, root locus techniques in time domain and Bode plot and Nyquist technique in frequency domain.
	5. Design different control law or algorithms like proportional control, proportional plus derivative(PD) control, proportional plus integration(PI) control, and proportional plus integration plus derivative (PID) control and different
	compensators like lag, lead, lag- lead.

S	Name of Authors /Books	Year of
N	/Publisher	Publication
0		
•		
1.	Nagrath & Gopal, Control System Engineering, 4th Edition, New age International ISBN-10-9789386070111	2008
2.	K. Ogata, Modern Control Engineering, Prentice Hall of India, ISBN-10-0136156738	2009
3.	Norman S. Mise, Control System Engineering 4th edition, Wiley Publishing Co	2006
4.	M.Gopal, Control System; Principle and design, Tata McGraw Hill ISBN-9780070482890	2002
5.	D.Roy Choudhary, Modern Control Engineering, Prentice Hall of India. ISBN: 9788120321960,	2005

Course Code: BME-O534

Course Name: Composite Materials

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Strength of material, Material Science.
Objectives:	1. To understand the mechanical behaviour of composite materials
	2. To get an overview of the methods of manufacturing composite materials

Course Coordinator	Mr. Mayank Pokhriyal
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Definition and applications of composite materials, Fibers- glass, carbon, ceramic and aramid fibers; Matrices- polymer, graphite, ceramic and metal matrices; characteristics of fibers and matrices.	03
	Module-2	Lamina-assumptions, macroscopic viewpoint, generalized Hooke's law, reduction of homogeneous orthotropic lamina, isotropic limit case, orthotropic stiffness matrix, commercial material properties, rule of mixtures, transformation matrix, and transformed stiffness.	04
UNIT-2	Module-3	Manufacturing of composite materials, hand layup processes – spray up process	03
		compression moulding – reinforced reaction injection moulding – resin transfer moulding – Pultrusion – Filament winding – Injection moulding	05
UNIT-3	Module-4	Basic assumptions of laminated anisotropic plates, symmetric laminates, angle ply laminates, cross ply laminates, laminate structural moduli, evaluation of lamina properties	03
	Module-5	Determination of lamina stresses, maximum stress and strain criteria, von Mises Yield criterion for isotropic materials, generalized Hill's criterion for anisotropic materials, Tsai-Hill's criterion for composites, prediction of laminate failure, thermal analysis of composite laminates.	06
UNIT-4	Module-6	Characteristics of MMC, various types of metal matrix composites, alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume fraction – rule of mixtures.	03
	Module-7	Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interfacemeasurement of interface properties- applications of MMC in aerospace, automotive industries	05
UNIT-5	Module-8	Analysis of laminated plates- equilibrium equations of motion, energy formulation, static bending analysis, buckling analysis, free vibrations, natural frequencies. Testing of composites:	04
	Module-9	Physical, Mechanical, Wear, machinability and Other Properties. Effect of size, shape and distribution of particulate on properties	04
Total No. o	of Hours		40

CO2 Determine-Determination of lamina stresses, maximum stress and strain criteria, von Mises Yield criterion for isotropic materials, generalized Hill's criterion for anisotropic materials, Tsai-Hill's criterion for composites, prediction of laminate failure, thermal analysis of composite laminates

CO3 Make use of-Manufacturing of composite materials ,hand layup processes—spray up process

CO4 Classify-orthotropic stiffness matrix, commercial material properties, rule of mixtures,

transformation matrix, and transformed stiffness

CO5 Identify- Lamina-assumptions, macroscopic viewpoint, generalized Hooke's law, reduction of homogeneous orthotropic lamina, isotropic limitcase,

CO6 ExplainTsai-Hill's criterion for composites, prediction of laminate failure, thermal analysis of composite laminates

CO7 Illustrate- Basic assumptions of laminated anisotropic plates, symmetric laminates, angle ply laminates, crossply laminates, laminate structural moduli, evaluation of lamina properties

CO8 Choose- Characteristics of MMC, various types of metal matrix composites, alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements particles—fibres. Effect of reinforcement—volume fraction—rule of mixtures

CO9 Compare- Processing of MMC – powder metallurgy process –diffusion bonding–stir casting–squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties.

CO10 Develop-Analysis of laminated plates- equilibrium equations of motion, energy formulation, static bending analysis, buckling analysis, free vibrations, natural frequencies

Suggested books:

S	Name of Authors /Books /Publisher	Year of Publication
0.		
1.	Gibson R.F. Principles of Composite Material Mechanics, second edition, McGraw Hill	1994
2.	Hyer M.W., Stress Analysis of Fiber- Reinforced Composite Materials, McGraw Hill.	1998
3.	Mathews F. L. and Rawlings R. D., "Composite Materials: Engineering and Science", 1st Edition, Chapman and Hall, London, England.	1994
4.	Chawla K. K., "Composite materials", Second Edition, Springer – Verlag.	1998

Course Code: BME-O535

Course Name: Machine Learning

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Understanding of Basic Programming Concept and Mathematics (probability and statistics).
Objectives:	The course has following objectives To learn the fundamentals of Machine Learning. To understand basic component of an intelligence system. To explore applications of machine learning. To understand different types of machine learning algorithms and tools. To learn how to use machine learning model to solve real world
Course Coordinator	problem. Dr. Suyash Bhardwaj

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction to Machine Learning, Difference between Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL), Applications of Machine Learning, Limitations or need for applying ML algorithms, Types of Machine Learning and their use cases, Types of problem – Regression and Classification, Types of data – Structured Data and Unstructured Data. Batch and online learning.	03
UNIT-2	Module-2	Tools required for machine learning- Python Libraries (Numpy, Pandas, Matplotlib etc), Framework for machine learning algorithm (Scikit- learn, TensorFlow, Keras, Anaconda, Google Colab etc), Popular ML Datasets (MNIST Dataset, IRIS Dataset, Wine quality dataset, ImageNet, IMDB reviews, Recommender Systems Dataset etc), Data repositories sources for machine learning practices (UCI Machine learning repository, Kaggle, Wikipedia, CMU, Google Dataset Search, The Big Bad NLP Database etc).	12
UNIT-3	Module-3	Basic concept of Probability theory and Linear Algebra, Bias, Variance, Bias-Variance tradeoff, overfitting and underfitting. Pre-processing of data - Data cleaning, wrangling and filtering, Handling missing and categorical data, Data scaling, Feature extraction and selection, covariance matrix, Dimensionality Reduction, Train-Test splitting strategy, Training Set, Validation Set, Test Set, Importance of cross validation – Holdout Method and K-fold cross validation.	05
UNIT-4	Module-4	Introduction to performance metrics for Machine Learning Algorithm — Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Confusion Matrix, Classification Accuracy, Classification Report (Precision, Recall/Sensitivity, Specificity, F1-Score, Area Under ROC curve). Fine tuning of model — Grid Search, Randomized Search, Ensemble Method. Concept of Bagging.	15
UNIT-5	Module-5	Introduction to regression problems, Types of regression – Linear Regression, Logistic Regression, Polynomial Regression. Introduction to classification problems and Types of classification - Binary Classification, Multi-Class Classification, Multi-Label Classification, Imbalanced Classification. Introduction to reinforcement learning and types - Model-Free and Model-Based RL	05
Total No.	of Hours		40

Learning	understand a wide variety of learning algorithms. Understand how to evaluate models				
Outcomes:	generated from data. Apply the algorithms to a real problem, optimize the models learned				
	and report on the expected accuracy that can be achieved by applying the models.				

S S N o.	Name of Authors /Books /Publisher	Year of Publication
1.	Introduction to Machine Learning, Alpaydin, E., MIT Press, 2004	2004
2.	Introduction to Machine Learning with Python: A Guide for Data Scientists, Andreas C. Müller and Sarah Guido, O'Reilly, 2016	2016

GURUKULA KANGRI (DEEMED TO BE UNIVERSITY), HARIDWAR

Faculty of Engineering & Technology Mechanical Engineering B. Tech. Fourth Year Syllabus in accordance with AICTE Model Curriculum

B.Tech. IV Year Semester – VII

			I COURSENAME F	Period per week		EVALUATION SCH			EME					
s.	COURSE	COURSE				SESSIONAL EXAM.			EXAM.	Credit				
N O.	N CODE	CODE	OPTED	OPTED		L	Т	P	CT	TA	TOTAL	ESE ESE		TOTAL
	THEORY SUBJECTS													
1	BME- C711	PCC	Refrigeration & Air Conditioning	3	0	0	20	10	30	70	3	100		
2	BME- C712	PCC	Maintenance Management	3	0	0	20	10	30	70	3	100		
3	BME- P72X	PEC	Program Elective-IV	3	0	0	20	10	30	70	3	100		
4	BME- P72X	PEC	Program Elective-V	3	0	0	20	10	30	70	3	100		
5	BME- O73X	OEC	Open Elective-III	3	0	0	20	10	30	70	3	100		
			PRACTICAL / T	RAIN	NING	/PR	OJEC'	Γ						
6	BME- C761	PCC	Refrigeration & Air ConditioningLab	0	0	2	10	05	15	35	1	50		
8	BME- C770	PCC	Project-III	0	0	8	40	20	60	140	4	200		
	TOTAL					10	150	75	225	525	20	750		

NOTE: Electives will be offered depending upon the availability of teaching staff and minimum thirty students should opt for a particular elective.

L-Lecture; T-Tutorial; P-Practical; CT-Cumulative Test; TA- Teacher Assessment; ESE End Semester Examination; BSC-Basic Science Course; ESC- Engineering Science Courses; PEC-Program Elective Course; SEC- Skill Enhancement Course; AECC- Ability Enhancement Compulsory Course; HSMC-Humanities, Social Science & Management Course

Grading & Grade Points: O(Outstanding)= 10; A⁺(Excellent)= 9; A(Very Good)= 8; B⁺(Good)= 7; B(Above Average)= 6; C(Average)= 5; P(Pass)= 4; F(Fail)= 0; Ab(Absent)= 0

Program Elective -IV & V (Seventh semester)

BME-P721	Computer Aided Design
BME-P722	Advanced Machining Processes
BME-P723	Advanced Welding Processes
BME-P724	Non-Traditional & Computer Aided Manufacturing
BME-P725	Power Plant Engineering
BME-P726	Simulation of Mechanical Systems
BME-P727	Additive Manufacturing
BME-P728	Finite Element Methods
BME-P729	Automobile Engineering

Open Elective -III (Seventh semester)

BME-O731	Nanotechnology and Nano computing
BME-O732	Artificial Intelligence and Robotics
BME-0733	Energy Resources and Management
BME-O734	Engineering System Design Optimization

Course Code: BME-C711

Course Name: Refrigeration & Air Conditioning

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Fundamental Knowledge of Thermodynamics.				
Objectives:	 To familiarize with the terminology associated with refrigeration systems and air conditioning. To understand basic refrigeration processes. To understand the basics of psychrometry and practice of applied psychometrics. To acquire the skills required to model, analyse and design different refrigeration as well as air conditioning processes and components. 				
Course Coordinat or	Mr. Yogesh Kumar				

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Refrigeration: Introduction to refrigeration system, Methodsof refrigeration, Carnot refrigeration cycle, Unit of refrigeration, Refrigeration effect & C.O.P.	02
	Module-2	Air Refrigeration Cycle: Open and closed air refrigeration cycles, Reversed Carnot cycle, Bell Coleman or Reversed Joule air refrigeration cycle, Aircraft refrigeration system, Classification of aircraft refrigeration system. Boot strap refrigeration, Regenerative, Reduced ambient, Dry air rated temperature (DART).	06
UNIT-2	Module-3	Vapour Compression System: Single stage system, Analysis of vapour compression cycle, Use of T-S and P-H charts, Effect of change in suction and discharge pressures on C.O.P, Effect of sub cooling of condensate & superheating of refrigerant vapour on C.O.P of the cycle, Actual vapour compression refrigeration cycle, Multistage vapour compression system requirement, Removal of flash gas, Intercooling, Advanced vapour compression cycles, Different configuration of multistage system, Cascade system	08
UNIT-3	Module-4	Vapour Absorption System: Working Principal of vapour absorption refrigeration system, Comparison between absorption & compression systems, Elementary idea of refrigerant absorbent mixtures, Temperature – concentration diagram & Enthalpy – concentration diagram, Adiabatic mixing of two streams, Ammonia – Water vapour absorption system, Lithium- Bromide water vapour absorption system, Comparison.	06

	Module-5	Refrigerants: Classification of refrigerants, Nomenclature, Desirable properties of refrigerants, Common refrigerants, Secondary refrigerants and CFC free refrigerants. Ozone depletion and global warming issues	02
UNIT-4	Module-6	Air Conditioning: Introduction to air conditioning, Psychometric properties, Psychometric chart, Different Psychometric processes, Thermal analysis of human body, Effective temperature and comfort chart, Cooling and heating load calculations, Selection of inside & outside design conditions, Heat transfer through walls & roofs, Infiltration & ventilation, Internal heat gain, Sensible heat factor (SHF), By pass factor, Grand Sensible heat factor (GSHF), Apparatus dew point (ADP).	08
UNIT-5	Module-7	Refrigeration Equipment & Application: Elementary knowledge of refrigeration & air conditioning equipments eg compressors, condensers, evaporators & expansion devices, Air washers, Cooling, towers & humidifying efficiency, Food preservation, Cold storage, Refrigerates Freezers, Ice plant, Water coolers, Elementary knowledge of transmission and distribution of air through ducts and fans, Basic difference between comfort and industrial air conditioning	08
Total No. o	of Hours		40

Course Outcomes: At the end of the course, the student will be able to

CO1: Define the concept of refrigeration and its unit, COP, Dry air rated temperature (DART), Refrigerant, Sensible heat factor (SHF), Grand Sensible heat factor (GSHF), Apparatus dew point (ADP).

CO2: Explain working Principal of vapour absorption refrigeration system, Carnot refrigeration cycle Reversed Carnot cycle, Bell Coleman or Reversed Joule air refrigeration cycle, air conditioning cycle, properties of refrigerants.

CO3: Compare between absorption & compression systems, Ammonia-Water and Lithium-Bromide water vapour absorption system, Single stage and multi-stage vapour compression cycle, comfort and industrial air conditioning.

CO4: Classify methods of refrigeration, methods of air conditioning, classification of refrigerants, psychometric processes, Vapour absorption system, Vapour compression system.

CO5: Determine COP of refrigerator and air conditioner, capacity of the refrigerator, cooling performance, heat rejection capacity, power required to refrigerator and air conditioning system, Effect of refrigerant, intercooling, cascade system, sub cooling, and superheating.

S	Name of Authors /Books /Publisher	Year of
Ň		Publication
0.		
1.	Manohar Prasad, "Refrigeration and Air conditioning", 3rd edition, New Age	20
	International (P) Ltd. Publication ISBN- 978-8122436945	20
2.	C P Arora, "Refrigeration and Air conditioning", 3rd edition, McGraw Hill	20
	Education,	17
	ISBN- 978-9351340164	
3.	W. F. Stoecker, J. W. Jones, "Refrigeration and Air conditioning", McGraw Hill	20
	India, Publisher, ISBN- 9789332902954	14
4.	P.L. Ballaney, "Refrigeration and Air conditioning", 16th edition, Khanna Publishers	19
	, ISBN- 978-8174091369	72

Course Code: BME-C712

Course Name: Maintenance Management

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 10	

Prerequisites:	English language	
Objectives:	 To ensure that equipment and infrastructure are always in good condition. To carry out prompt emergency repair of equipment and infrastructure so as to secure the best possible availability for production. To ensure the operation of equipment for production and for the distribution of energy and fluids. 	
Course Coordinator	Dr. Sunil Kumar	
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus	

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Introduction, operating life cycle, reliability, Failure analysis, failure rate curve, elements in series, parallel, logic diagrams, improving reliability, maintainability, availability, reliability and maintainability.	08
UNIT-2	Module-2	Maintenance Strategies: Break down maintenance, planned maintenance, strategies, preventive maintenance, design out maintenance, planned lubrication, total productive maintenance, and zero break down.	08
UNIT-3	Module-3	Replacement planning maintain or replace decision, replacement of items that deteriorate identical equipment, replacement of items that fail without deterioration individual, group replacement, replacement in anticipation of failure.	08
UNIT-4	Module-4	Break down maintenance planning, assignment model, minimum cost service rate.	08
UNIT-5	Module-5	Maintenance Management, production maintenance system, objectives and functions, forms, policy, planning, organization, economics of maintenance, manpower planning, materials planning, spare parts planning and control, evaluation of maintenance management.	08
Total No. o	of Hours		40

CO No.	Course Outcomes
CO-1	Explain maintenance objectives and functions, need for maintenance plan and organization, Functions of maintenance control and determine Failure probability.

CO-2	Gain the necessary knowledge about the types of maintenance and know how to use them when design maintenance systems.	
CO-3	Explain different maintenance systems and the steps involved in establishing a maintenance.	
CO-4	Explain different maintenance management objective and economics point of view.	
CO-5	Different type equipment and tool used in maintenance and management.	

S	Name of Authors /Books	Year of
N	/Publisher	Publicatio
0.		n
1.	Nauhria & Prakash, <i>Management of systems</i> , Wheeler publishing, ISBN-9788185814520	1998
2.	V. Venkataraman, <i>Maintenance engineering and management</i> , <i>Prentice Hall India Learning Private Limited</i> , ISBN-978-8120331303	2007
3	HP Garg, Industrial Maintenance, S. Chand Publishing, ISBN-9788121901680	2010
4.	R.C Mishra, <i>Maintenance Engineering and Management</i> , Prentice Hall India Learning Private Limited; 2nd edition, ISBN- 978-8120345737	2012

Course Code: BME-C761

Course Name: Refrigeration & Air Conditioning Lab

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 35
LTP	Credit : 1
0 02	

Prerequisites:	Fundamental Knowledge of Refrigeration cycle and air conditioning equipment.	
Objectives:	 To understand the practical knowledge of vapour compression cycle. To understand the practical knowledge of air conditioning test rig. To understand the practical knowledge of ice plant test rig. To understand the practical knowledge of different devices used in industry. 	
Course Coordinat or	Mr. Kapil Dev Sharma	

Module	Course Content	No. of Hours
Experiment-1	Experiment on refrigeration test rig and calculation of various performance parameters	02
Experiment-2	Experiment on air-conditioning test rig & calculation of various performance parameters.	02
Experiment-3	Experiment on Ice-plant test rig & calculation of various performance parameters.	02
Experiment-4	To study different types of expansion devices used in refrigeration system.	02
Experiment-5	To study different types of evaporators used in refrigeration systems.	02
Experiment-6	To study basic components of air-conditioning system.	02

Experiment-7	To study air washer system and processes.	02
Experiment-8	To study the window air conditioner	02
Total No. of Hours		16

Course Outcomes: At the end of the course, the student will be able to

- **CO1:** Understand the working of refrigeration system and air conditioning system.
- **CO2:** Demonstrate the operation of refrigeration and air conditioning system.
- CO3: Define the importance of various important components of refrigeration and air conditioning system.
- **CO4:** Compare various processes of the vapour compression cycle of psychometric chart.
- CO5: What is the fundamental principles of vapour compression cycle used in refrigeration and air conditioning cycle.

NOTE

- 1. In practical examination the student shall be required to perform one experiment.
- 2. A teacher shall be assigned 20 students for daily practical work in laboratory.
- 3. No batch for practical class shall consist of more than 20 students.
- 4. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students.
- Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

Course Code: BME-C770 Course Name: Project-III

MM: 200	Sessional: 60
Time: 2 Hr.	ESE: 140
LT P	Credit : 4
0 0 8	

COURSE OBJECTIVE:

- To enable the student to take up investigative study in the broad field of Mechanical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor.
- To provide a good initiation for the student(s) in R&D work.
- Survey and study of published literature on the assigned topic.
- Working out a preliminary Approach to the Problem relating to the assigned topic
- Conducting preliminary Analysis/Modelling/Simulation/Experiment/Design/Feasibility.
- Preparing a Written Report on the Study conducted for presentation to the Department.
- Preparing a Written Report on the Study conducted for presentation to the Department.
- Improve upon the communication and presentation skills.

Each student shall be assigned a Minor Project by Departmental committee. The student is required to perform his project work under the supervision of the supervisor(s). There shall be a presentation on the project work of the student to be evaluated by a departmental committee chaired by H.O.D. The student is required to submit his project report along with a research paper in the form of Dissertation 15 days before the end of VII semester. The student is required to submit three copies of the project work with a certificate from the supervisor(s) that the work is an authentic record of the work performed by him. The report shall be forwarded by H.O.D. The report of the project work shall be evaluated by the external examiner(s). The same external examiner(s) shall hold the viva-voce examination.

COURSE OUTCOME:

- Students will get knowledge of problem identification and use their skills for teambuilding and project development.
- Develop a solution for any real world problem.
- Students will get equipped with knowledge of latest/upcoming problems and solutions.
- Students will also be able to improve skills for project planning, implementation and communication.

NOTE:

- Marks for the project work shall be awarded jointly by the external and internal examiners after vivavoce examination.
- There shall be a seminar on the project work of the student to be evaluated by the Departmental committee chaired by H.O.D.

TEXTBOOKS:

1. Ford, Neal, Matthew McCullough and Nathaniel Schutta, Presentation patterns: Techniques for crafting better presentations (1 ed.), Addison- Wesley, 2012. ISBN 978-0321820808.

Course Code: BME-P721

Course Name: Computer Aided Design

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Programming in C and Basic Algebra
Objectives:	The primary objective of the course is to introduce the student to working with discretised geometry in design of mechanical components and representations of shapes. It is intended to be a first course on Finite Element Techniques and CAD tools like surface and solid modelling. They will also practice on AUTOCAD and CREO.
Course Coordinat or	Dr. Sanjeev Kumar Lambha

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction and Review of Computer Programming: Introduction to CAD/CAE, Element of CAD, Concepts of integrated CAD/CAM, CAD Engineering applications, its importance & necessity. Review of C, C++, statements such as if else for while & switch, functions, pointer notations, structure & class, concept of OOP.	04
	Module-2	Computer Graphics I - Computer systems, Graphics input devices- cursor control devices, Digitizers, Scanners, speech oriented devices and touch panels, Graphics display devices CRT, colour CRT monitors, DVST, Flat- panel display, Graphics output Devices.	04

UNIT-2	Module-3	Computer Graphics-II: Graphics software, Graphics functions, output primitives- Bresenhams line drawing and Mid-point circle algorithms.	03
	Module-4	Geometric Transformations - Word/device co- ordinate representations, 2D and 3D geometric transformations, Matrix representation-translation, scaling, shearing, rotation and reflection, composite transformations, concatenation, rotation about arbitrary axis. Exercise and programs.	05
UNIT-3	Module-5	Plane Curves: Curve representation, Interpolations Vs approximation, Parametric Continuity conditions, Spline Curves- Hermit spline, Bezier spline and B- spline Curves and its Properties.	05
	Module-6	3-D Graphics: Polygon surfaces Polygon mesh representations, Quadric and Super quadric surfaces and Blobby objects, Fractals. Solid modelling- wire mesh and sweep representation, constructive solid geometry, Boolean operations, Boundary representations. Colour models.	05
UNIT-4	Module-7	Computer Aided Design of Machine Elements and other Systems: CAD of machine elements such as shaft, springs, bearings and problems from other systems such as heat exchanger, inventory control etc. Writing Computer program in C, Drafting/Design of software such as Auto-CAD and Pro-E.	06
UNIT-5	Module-8	Numerical Methods: Introduction, Errors in numbers, Binary, octal and Hexadecimal number representation. Root-finding & Optimisation. Interactive methods-Bisection method, Regula- Falsi method, Newton Raphson method, Interpolation- Lagrange and Newton s interpolation, Curve fitting-Least Square method, Numerical differentiation-interpolation methods, Numerical integration- Trapezoidal and Simpson Method.	05
	Module-9	Finite Element Methods - Introduction and Application of FEM, Stiffness Matrix/ Displacement Matrix, One/Two	03
		Dimensional bar & beam element (as spring system) analysis.	
Total No. o	of Hours		40

Learning Outcomes:	CO1: Understand the basics of computer graphics for developments of CAD models.
	CO2: Apply Geometric transformations to create solid models using CAD tools.
	CO3: Illustrate and draw various curves used in CAD drawings.
	<u>CO4:</u> Design the basic drawing of mechanical components such as shafts, springs, bearings, heat exchangers using CAD software i.e. AUTOCAD.
	CO5: Apply numerical methods for the modelling of CAD models.

S · N	Name of Authors /Books /Publisher	Year of Publication
1.	McConnell, J. J., "Computer graphics theory into practice", Illustrated edition, Jonesand Bartlett Publishers, ISBN- 978-0763722500	2005

2.	Davis, M. J., "Computer Graphics", UK Ed., Nova Science Pub Inc, ISBN-978-1617618116	2011
3.	Rogers, D. F., Earnshaw, R. A., Graphics, B. C. S. C., Group, D., & Society, C. G. "Computer graphics techniques theory and practice", 1990 Ed. Springer-Verlag, ISBN- 978-0387972374	1990
4.	Salomon, D., " <i>Transformations and projections in computer graphics</i> " Springer, ISBN-978-1846283925	2006
5.	Bethune, J. D., "Engineering Design and Graphics with SolidWorks" Prentice Hall, ISBN-978-0135024294	2009
6.	Zeid, I., " <i>Mastering CAD/CAM (Engineering Series)</i> ", 2 nd Ed., McGraw-Hill Higher Education, ISBN- 978-0070634343	2006
7.	NPTEL courses http://nptel.iitm.ac.in/courses.php- web and video resources on Computer Aided Design and Manufacturing.	

Course Code: BME-P722

Course Name: Advanced Machining Processes

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	Conventional Machining Processes.	
Objectives:	 To identify the classification of unconventional machining processes. To understand the principle, mechanism of metal removal of various unconventional machining processes. To understand the applications of different processes. To study the various process parameters and their effect on the component machined on various unconventional machining processes 	
Course Coordinator	J 1	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Limitations of conventional manufacturing processes, need of unconventional manufacturing processes and its classification.	08
	Module-2	Unconventional Machining Process: Principle and working and applications of unconventional machining process such as Electro-Discharge machining, Electro-chemical machining, ultrasonic machining, Abrasive jet machining etc.	
UNIT-2	Module-3	Principle and working and application of unconventional machining processes such as laser beam machining, Electron beam machining, Ultrasonic machining etc.	08
UNIT-3	Module-4	Unconventional Welding Processes: Explosive welding, Cladding etc. Under water welding, Metallizing, Plasma arc welding/cutting etc.	08

UNIT-4	Module-5	Unconventional Forming Processes: Principle, working and applications of High energy forming processes such as Explosive Forming, Electromagnetic forming, Electro-Discharge forming, water hammer forming, explosive compaction etc.	08
UNIT-5	Module-6	Introduction to the Basic Principles of Additive Manufacturing/ digital Manufacturing: Advantages and limitations of AM technologies AS	08
		developing new engineering systems, identifying emerging opportunities in developing products for mass customization. Additive Manufacturing Processes	
Total No.	Total No. of Hours 40		40

CO No.	Course Outcomes
CO-1	Understand the needs and classification of unconventional machining process.
CO-2	Understand the principle of working, mechanism of metal removal in the various unconventional machining process.
CO-3	Understand the basic techniques of machining processes
CO-4	The student is able to identify the process parameters, their effect and applications of different processes.
CO-5	Estimate the material removal rate and cutting force, in an industrially useful manner, for practical machining processes.

S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	P.C. Pandey, <i>Modern Machining Processes</i> , McGraw Hill Education, ISBN- 978-0070965539	1980
2.	V.K Jain, <i>Unconventional Machining</i> , Allied Publishers Pvt. Ltd.; 1st Ed., ISBN-978-8177642940	2019
3.	Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing	2010
	Technologies: Rapid Prototyping to Direct Digital Manufacturing", 1st	
	Ed., Springer Publ., ISBN- 978-1-4419-1119-3	

Course Code: BME- P723

Course Name: Advanced Welding Processes

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Conventional welding and Weld Design

Objectives:	 Able to get the knowledge of various conventional and advanced welding techniques which make them interested to choose a career in the field of welding. To impart knowledge on various advanced welding processes so that the students can apply them in engineering industry applications. To develop the knowledge on the design of welded joints and the quality control of weldments. 		
Course	Mr. Yogesh Kumar		
Coordinat			
or			
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus		

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Importance and application of welding, classification of welding process. Selection of welding process.	03
	Module-2	Review of conventional welding process: Gas welding, Arc welding, MIG, TIG welding. Resistance welding. Electro slag welding, Friction welding etc. Welding of MS.CI, Al, Stainless Steel & Maurer/Schacfflar Diagram. Soldering & Brazing	05
UNIT-2	Module-3	Advanced welding Techniques: Principle and working and application of advanced welding techniques such as Plasma Arc welding, Laser beam welding, Electron beam welding, Ultrasonic welding etc.	07
UNIT-3	Module-4	Advanced welding Techniques (continued): Principle and working and application of advanced welding techniques such as explosive welding/ cladding,	03
	Module-5	Underwater welding, Spray-welding /Metallizing, Hard facing.	06
UNIT-4	Module-6	Weld Design: Welding machines/equipments and its characteristics. Weld defects and distortion and its remedies, Inspection/testing of welds	05
	Module-7	Macrostructure & microstructure of welds, HAZ, Weld Design, Welding of pipe-lines and pressure vessels. Life predication.	04
UNIT-5	Module-8	Thermal and Metallurgical Consideration: Thermal considerations for welding, temperature Distribution, Analytical analysis, heating & cooling curves. Metallurgical consideration of weld, HAZ and Parent metal, micro & macro structure. Solidification of weld and properties.	08
Total No.	of Hours		40

Learnin	At the end of the course students are able to:
g Outcom	 Apply the knowledge of solid state welding process for engineering applications.
es:	 Understand the principles of radiant energy metal joining process
	 Understand the fundamental principles of special arc welding process.
	 Understand the knowledge of plasma arc in metal joining and cutting process.
	 Understand the knowledge of design principles in weld joints. Apply the
	concept of quality control and testing of weldments in industrial environment.

S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	Bruce Stirling, <i>Text Book Of Welding Technology</i> , Dhanpat Rai Publications, ISBN-978-8189928360	2013
2.	Richard L. Little, Welding and Welding Technology, McGraw-Hill Inc., ISBN-978-0070380950	1973
3	Parmer R. S., <i>'Welding Engineering and Technology'</i> , Khanna Publishers, 2 nd Ed., ISBN- 978-8174091260	1996
4	Bowditch, William A., Bowditch, Kevin E., Bowditch, Mark A, <i>Welding Technology Fundamentals</i> , 4th Ed. , Goodheart-Willcox Co., ISBN- 978-1605252568	2009

Course Code: BME-P724

Course Name: Non-Traditional and Computer Aided Manufacturing

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	The student should have completed 2 semesters of UG Engg.	
Objectives:	To acquaint and equip with the Computer Aided Design and manufacturing of	
	farm machinery with the help of CAD	
Course	Mr. Kapil Dev Sharma	
Coordinat		
or		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Non-Traditional Manufacturing Introduction: Classifications of material removal processes. Characteristics of conventional material removal (machining) processes. Need for non-conventional or non-traditional processes.	8

UNIT-2	Module-2	Non-Traditional Manufacturing Process Description, Modelling, Application and Product Quality Related Issues: Abrasive Jet Machining, Ultrasonic Machining, Water Jet Machining, Abrasive Water Jet Machining, Electro-Discharge Machining, Chemical & Photo Chemical Machining, Electro-Chemical Machining, Electron Beam Machining, Laser Beam Machining.	8
UNIT-3	Module-3	Non-Traditional Manufacturing Advanced Topics: Basic introduction to Chemical, physical vapour deposition processes, Thermal spraying processes, Hybrid processes like electro-jet drilling, electro chemical grinding, electro-chemical discharge machining. Rapid prototyping.	8
UNIT-4	Module-4	Computer Aided Manufacturing Introduction: Relation between production volume and flexibility. Various manufacturing systems – batch, mass, group, cellular and flexible manufacturing systems; Type of automation and benefits of soft or flexible automation.	6
	Module-5	Automation in Material Handling and Assembly	2
UNIT-5	Module-6 Module-7	Computer Aided Manufacturing CNC Machines: Introduction, classification, design and control features including interpolations. NC Part Programming	2
		NC Part-Programming	
	Module-8	Introduction to Robotics: Definitions, motivation, historical development. Basic structure, classification, workspace, drives, controls, sensors, grippers, specifications.	3
Total No.	of Hours		40

Learning Outcomes:

The students are expected to be able to demonstrate the following knowledge, skills and attitudes after completing this course

- Understanding the implementation of automation in production system and ability to know the role of computer in the area of manufacturing.
- Ability to design and develop various parts of CNC Machines for improving their effectiveness and implementation of adaptive control.
- Ability to develop manual part program and computer assisted part program for the production of components.
- Ability to understand the various modules of FMS and apply the concept of group technology and computer assisted process planning.

S	Name of Authors /Books /Publisher	Year of
Ň		Publication
0.		
1.	Mishra P. K., "Non-Conventional Machining", Narosa Publishing House, ISBN-9788173191381	1997
2.	Pandey and Shan, " <i>Modern Machining Processes</i> ", McGraw Hill, ISBN- 0070965536	1980
3.	Bhattacharya A., "New Technology", Institution of Engineers (I), ISBN-10: 0521735882	2010
4.	Jain S. K. and Schmid S. R., " <i>Manufacturing Engg. & Technology</i> ", Addison Wesley Ltd., ISBN-10:8177581708	2002
5.	NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112 web and video resources on Manufacturing Processes & Advanced manufacturing processes.	

Course Code: BME-P725

Course Name: Power Plant Engineering

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Engineering Thermodynamics, Fluid Mechanics, Heat Transfer		
Objectives:	 To introduce students to different aspects of power plant engineering To familiarize the students to the working of power plants based on different fuels. To expose the students to the principles of safety and environmental issues. 		
Course Coordinat or	Mr. Praveen Kumar Pandey		
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus		

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Analysis of steam cycles, optimization of reheat pressure and degree of regeneration, coupled cycles and combined plants, process heat and power. Fuels and their properties, stoichiometric and actual air requirements, flue gas analysis.	08
UNIT-2	Module-2	Boilers : Different types of boilers, boiler mountings, feed water treatment, boiler loading and manner of operation. Boiler energy balance, draft system. Different types of furnaces for burning coal, fuel oil and gas. Circulation theory, down-comers and risers, economizers and superheaters, air pre-heater, drum and its internals.	08
UNIT-3	Module-3	Steam Turbines: Convergent and convergent- divergent nozzles - theory and design. Impulse and reaction turbines, compounding of turbines, optimum velocity ratio, reheat factor and condition line, parallel exhaust, losses in steam turbines, steam turbine governing.	08
UNIT-4	Module-4	Plant Components: Theory and design of condensers, air ejector and cooling towers. Types and applications.	08
UNIT-5	Module-5	Power Plant Economics & Environmental Considerations: Plant energy studies: concepts and resources, procedures and implementation. Energy accounting. Various thermal systems and energy management. Electrical load management.	08
		Economic analysis. Waste heat recovery. Multi objective energy management- conservation, pollution control and evaluation of alternative energy sources. Cost of energy management and payback.	
Total No.	of Hours		40

Learning	After learning the course the students should be able to:
Outcomes:	 Understand the different power generation methods, its economics and global energy situation Apply the basic thermodynamics and fluid flow principles to different power generation methods Analyze thermodynamic cycles of steam power plant and understand construction, working and significance of its various systems
	Analyze thermodynamic cycles of gas turbine power plant, nuclear power plant and jet propulsion systems

S		
Ň		Publication
0.		
1.	Nag P.K., " <i>Power plant engineering</i> ", 3 rd Ed., Tata McGraw-Hill., ISBN-978-0070648159	2007
2.	Arora S. C., & Domkundwar S., "A course in power plant engineering", 8th Ed., Dhanpat Rai, ISBN- 978-8177001952	2016
3.	Elanchezhian C., " <i>Power Plant Engineering</i> ", I.K. International Pub. House, ISBN-978-8189866303	2013
4.	Sharma P. C., "Power Plant Engineering", S. K. Kataria & Sons, ISBN-978-9350143841	2013
5.	Drbal L. F., Boston P. G., Westra K. L., Black, & Veatch, " <i>Power plant engineering</i> ", Chapman & Hall, ISBN- 978-0412064012	1995
6.	Skrotzki B. G. A., & Vopat W. A., " <i>Power station engineering and economy</i> ", 2 nd Ed., McGraw- Hill, ISBN- 978-0070579408	1960

Course Code: BME-P726

Course Name: Simulation of Mechanical Systems

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Mathematics	
Objectives:	The objective of this course is that students will learn to model and solve mechanical design problems.	
Course	Dr. Jasbir Singh	
Coordinator		
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A	
	shall contain of ten (10) short answer type questions of six (06) mark each and student	
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)	
	long answer type questions of ten (10) marks each and student shall be required to attempt	
	any four questions. Questions shall be uniformly distributed from the entire syllabus	

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: A review of basic probability and statistics, random variables and their properties, Estimation of means variances and correlation.	06
UNIT-2	Module-2	Physical Modeling: Concept of System and environment, Continuous and discrete systems, Linear and nonlinear systems, Stochastic activities, Static and Dynamic models, Principles of modeling, Basic Simulation modeling, Role of simulation in model evaluation and studies, advantages of simulation.	08

UNIT-3	Module-3	System Simulation and Approach: Techniques of simulation, Monte Carlo method, Experimental nature of simulation, Numerical computation techniques, Continuous system models, Analog and Hybrid simulation, Feedback systems, Computers in simulation studies, Simulation software packages. System Dynamics: Growth and Decay models, Logistic curves, System dynamics diagrams. Probability Concepts in Simulation: Stochastic variables, discrete and continuous probability functions, Random numbers, Generation of Random numbers.	09
UNIT-4	Module-4	Variance reduction techniques, Determination of length of simulation runs. Simulation of Mechanical Systems: Building of Simulation models, Simulation of translational and rotational mechanical systems, Simulation of hydraulic systems.	09
UNIT-5	Module-5	Simulation of Manufacturing Systems: Simulation of waiting line systems, Job shop with material handling and Flexible manufacturing systems, Simulation software for manufacturing, Case studies.	08
Total No. of Hours		40	

Learning	The students are expected to have:		
Outcomes:	 Practical and simulation exposure to understand the complexity in design and 		
	manufacturing systems.		
	 Key simulation techniques that are going to be useful while solving complex 		
	problems.		

S	Name of Authors /Books /Publisher	Year of
Ň		Publication
0.		
1.	Geoffrey Gordon, "System Simulation", Prentice Hall, ISBN-9780138817978	1978
2.	Robert E. Shannon, "System Simulation: The Art and Science", Prentice Hall, ISBN-9780138818395	1975
3.	J. Schwarzenbach and K.F. Gill, Edward Arnold, "System Modelling and Control", Edward Arnold, ISBN-9780713135183	1984
4.	M Close and Dean K. Frederick, " <i>Modeling and Analysis of Dynamic Systems</i> ", Houghton Mifflin, ISBN-9780395551141	1993
5.	P. D. Cha, J. J. Rosenberg and C. L. Dym - 'Fundamentals of Modeling and Analyzing Engineering Systems, Cambridge University, ISBN-9780521594431	2000

Course Code: BME-P727

Course Name: Additive Manufacturing

	
MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	The student should have completed 2 semesters of UG Engg.
Objectives:	 In this course students will learn the importance of additive manufacturing (3D Printing/ Rapid Prototyping/ Green Manufacturing) and its huge role in global product development and innovation. The students will learn the latest trends and opportunities in 3D printing, including —personal 3D printing, localized services, production parts, mass customization, and how to commercialize your ideas.
Course Coordinator	Mr. Rishi Kumar Prajapati, Mr. Mayank Pokhriyal

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction to the Basic Principles of Additive Manufacturing/ digital Manufacturing: advantages and limitations of AM technologies AS developing new engineering systems, identifying emerging opportunities in developing products for mass customization.	04
	Module-2	Additive Manufacturing Processes	02
UNIT-2	Module-3	AM Technology: Extrusion, Beam Deposition, Jetting, Sheet Lamination, Direct-Write, Photo polymerization, Metal Technology & Processes, Sintering, and Powder Bed Fusion.	06
UNIT-3	Module-4	Design/Fabrication Processes: Data Sources, Software Tools, File Formats, Model Repair and Validation, Pre- & Post-processing, design practices for additive manufacturing.	05
	Module-5	Designing for Additive Manufacturing: Scaffolds, bio printing, tissue and organ engineering	04
UNIT-4	Module-6	Multiple Materials, Metals, polymers, ceramics, Hybrids, Composite Materials, current and material Selection & future directions, Process & Material Selection.	05
	Module-7	Direct Digital Manufacturing and Distributed Manufacturing, Related Technologies: 3D	06
		scanning, sintering, Mold making, Casting, Scanning, rapid tooling (RT), rapid manufacturing (RM).	
UNIT-5	Module-8	Applications of AM: Aerospace, Automotive, Manufacturing, Architectural Engineering, Art, Jewelry, Toys, Packaging, Architecture, Design and Entertainment and many more.	02
	Module-9	Biomedical Applications of AM: Medical, Biomedical, Dental, Bio-printing, Tissue & Organ Engineering and many others.	02
	Module-10	Future Trends and Directions in Additive Manufacturing, Business Opportunities, Standards and standardization in 3D Printing and the Future of Manufacturing, Intellectual Property, Product Development, Commercialization	04
Total No. o	of Hours		40

Learnin g	 Understanding the evolution and need of AM processes. It will develop the ability of select the process for particular application.
Outcom es:	 Understanding the basic principle of curing type, extrusion and layer deposition type AM processes. The students will learn the pros & cons of these processes and their applications.
	 The students will understand the use of pre requirement of AM process. Basic knowledge about the software requirement and processing of drawing. The students will learn about the post processing requirements of different AM processes
	 Appreciate the operating principles, capabilities and limitations of powder based additive manufacturing system, including 3D printing and laser sintering.
	Describe the important process parameters for bio-manufacturing and determine the suitable additive technique for bio manufacturing.

S	Name of Authors /Books	Year of
	/Publisher	Publication
N		
0.		
1.	Ian Gibson, David W. Rosen, Brent Stucker, "Additive Manufacturing	2010
	Technologies:	
	Rapid Prototyping to Direct Digital Manufacturing", 1st Ed., Springer Publ., ISBN-	
	978-1-4419-1119-3	
2.	Hopkinson, N, Haque, R., and Dickens, P., "Rapid Manufacturing: An Industrial	2005
	Revolution for a Digital Age: An Industrial Revolution for the Digital Age", Wiley,	
	ISBN- 978-0470016138	
3.	Bartolo P J (editor), "Virtual and Rapid Manufacturing: Advanced Research in	2007
	Virtual and Rapid Prototyping", 1st Ed, Taylor and Francis, ISBN-9780203931875	
4.	Chua C. K., Leong K. F., Lim C. S., "Rapid Prototyping", World Scientific, ISBN-	2003
	978-981-3106-04-8	
5.	Pique A., Chrisey D. B., "Direct Write Technologies for RP Applications: Sensors,	2001
	Electronics and Integrated Power Sources", 1st Ed, Academic Press, ISBN-	
	9780121742317	
6.	Venuvinod P. K., Ma W., "Rapid Prototyping - Laser Based and Other	2004
	<i>Technologies</i> ", Kluwer, 978-1-4757-6361-4	
	ISBN-	
7.	Andreas Gebhardt, "Understanding Additive Manufacturing", Hanser Publ., ISBN-	2012
	978-1569905074	
8.	Gibson, "Advanced Manufacturing Technologies for Medical Applications", Wiley,	2005
	ISBN- 978-0-470-01688-6	

Course Code: BME-P728

Course Name: Finite Element Methods

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Matrix Algebra & Basic Mathematics courses.
Objectives:	 The objective of the course is to apprise the students about the basics of the Finite Element Technique, a numerical tool for the solution of different classes of problems in solid mechanics. Different application areas will be dealt with after introducing the basic aspects of the method.
Course Coordinat or	Dr. Sanjeev Kumar Lambha

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Basic concepts: The standard discrete system, Finite elements of an elastic continuum displacement approach, Generalization of the finite element concepts- weighted residual and variational approaches.	08
UNIT-2	Module-2	Element Types: Triangular, rectangular, quadrilateral, sector, curved, iso-parametric elements and numerical integration. Automatic mesh generation schemes.	12
UNIT-3	Module-3	Application to structural mechanics problems: Plane stress and plane strains, Axisymmetric stress analysis, three dimensional stress analyses, bending of plates.	06
UNIT-4	Module-4	FEM in Steady State Field Problems: Introduction, heat conduction, fluid flow and nonlinear material problems, plasticity, creep etc.	08
UNIT-5	Module-5	Computer procedures for Finite element analysis.	06
Total No.	of Hours		40

Learning Outcomes:	<u>CO1:</u> Understand the basic concepts of finite element methods, concepts behind variational approaches and weighted residual methods in FEM.
	CO2: Implement the formulation techniques to solve problems using triangular, rectangular, quadrilateral, curved and isoparametric elements.
	CO3: Apply analytical concepts to solve for stress and strain analysis involved in problems related to structural mechanics.
	<u>CO4:</u> Identify the finite element methods for problems involving dynamics, heat transfer and fluid flow.

<u>CO5:</u> Explain the computer procedures involved in finite element analysis.

S	Name of Authors /Books	Year of
Ň	/Publisher	Publication
0.		
1.	Chandrupatla T. R., and Belegundu A. D., "Introduction to Finite Elements in	2011
	<i>Engineering</i> ", 4 th Ed, Pearson Education, 978-0132162746 ISBN-	
2.	David V Hutton, " <i>Fundamentals of Finite Element Analysis</i> ", International Ed. McGraw-Hill Int., ISBN- 978-0071218573	2003
3.	Rao S.S., " <i>The Finite Element Method in Engineering</i> ", 5 th Ed, Pergammon Press, ISBN- 978-1856176613	2010
4.	Logan D.L., "A First course in the Finite Element Method, 5 th Ed., Thomson Learning, ISBN- 978-0495668251	2010

5.	Robert D. Cook., David. S, Malkucs Michael E Plesha, "Concepts and Applications	2001
	of	
	Finite Element Analysis", 4th Ed., Wiley, ISBN- 978-0471356059	
6.	Reddy J.N, "An Introduction to Finite Element Method", 3rd Ed, McGraw-Hill	2005
	International Student Edition, ISBN- 978-0072466850	
7.	O. C. Zienkiewicz and R. L. Taylor, "The Finite Element Methods, The basic	1987
	formulation and linear problems Vol.1", Ed, McGraw-Hill College;, ISBN- 978-0070841741	

Course Code: BME-P729

Course Name: AUTOMOBILE ENGINEERING

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Rigid Body Dynamics (done in 1st year B.Tech.), Thermodynamics, Fluid Mechanics
Objectives:	The anatomy of the automobile in general. 2. The location and importance of each part. 3. The functioning of the engine and its accessories, gear box, clutch, brakes, steering, axles and wheels. 4. Suspension, frame, springs and other connections. 5. Emissions, ignition, controls, electrical systems and ventilation.
Course Coordinator	Mr. Kapil Dev Sharma

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Power Unit: Principles of Design of main components. Valve mechanism. Power and Torque characteristics. Rolling, air and gradient Resistance. Tractive effort.	04
	Module-2	Gear Box Gear ratio determination. Design of Gear box.	03
UNIT-2	Module-3	Transmission System: Requirements. Clutches. Toque converters. Over drive and free wheel, Universal joint. Differential Gear Mechanism of Rear Axle. Automatic transmission, Steering and Fron t Axle.	06
	Module-4	Castor Angle, wheel camber & Toe in Toe out etc. Steering geometry. Ackerman mechanism, Understeer and Over steer.	03
UNIT-3	Module-5	Braking System: General requirements, Road, tyre adhesion, weight transfer, Braking ratio. Mechanical brakes, Hydraulic brakes. Vaccum and air brakes. Thermal aspects.	05

	Module-6	Chassis and Suspension System: Loads on the frame. Strength and stiffness. Various suspension systems	03
UNIT-4	Module-7	Electrical System: Types of starting motors,	04
		generator & regulators, lighting system, Ignition system Horn, Battery etc. BS4 and BS6.	
	Module-8	Performance, combustion & emission characteristics of alternative fuels in SI and CI engines, Electric and Hybrid vehicles, application of fuel cells.	04
UNIT-5	Module-9	Automobile Air Conditioning: Requirements, Cooling & heating systems Cooling & Lubrication System: Different type of cooling system and lubrication system.	04
	Module-10	Maintenance System: Preventive maintenance, break down maintenance, and over hauling system	04
Total No.	of Hours		40

Learnin	At the end of the course students are able to:
g	 Identify the different parts of the automobile.
Outcom	 Explain the working of various parts like engine, transmission, clutch, brakes.
es:	 Describe how the steering and the suspension systems operate.
	 Understand the environmental implications of automobile emissions.
	Develop a strong base for understanding future developments in the
	automobile industry

S N o	Name of Authors /Books /Publisher	Year
•		
1	Hietner, Automotive Mechanics Principles And Practices, 2 Ed., ISBN-978-	2004
•	8123908915	
2	Kripal Singh, Automobile Engineering Vol-1, ISBN- 978-8180141966	2020
3	Narang, Automobile Engineering, Khanna Publishers - ISBN- 9387394255	1995
4	K.K. Ramalingam, "Automobile Engineering", Scitech Publication, Chennai,	2011
	ISBN- 978-8188429486	

Course Code: BME-O731

Course Name: Nanotechnology and Nano computing

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	First two years of undergraduate course of Engineering (Introductory, undergraduate
	level
	Physics, Chemistry and Mathematics)

Objectives:	 To foundational knowledge of the Nanocomputing and related fields. To make the students acquire an understanding the Nanocomputing and Applications To help them understand in broad outline of Nanocomputing and Nanotechnology 	
Course Coordinator	Dr. Jasbir Singh	
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus	

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Nanotechnology: Nano systems, Molecular machinery and manufacturing, quantum mechanics, mechanosynthesis, Ideas of Richard Feynman	04
	Module-2	Nanocomputing: Introduction, Nanocomputing Technologies, Carbon nanotubes, Nano Information processing, Silicon Nano electronics, prospects and Challenges.	04
UNIT-2	Module-3	Carbon Nanotubes: Properties, Molecular structure, Chiral Vector, carbon nanotube Electronics, Carbon Nanotube Field effect Transistors	08
UNIT-3	Module-4	Nanocomputing with Imperfections: Nanocomputing in presence of defects and faults, redundancy, Error control coding, reconfiguration, Fault Simulation, Defect Tolerance, Reconfigurable Hardware, Overcoming Manufacturing defects	05
	Module-5	Reliability of Nanocomputing: Markov Random Fields, examples, reliability Evaluation strategies, Law of large Numbers, Nano prism.	03
UNIT-4	Module-6	Nanoscale Quantum Computing Quantum Computers, Challenges to Physical Realization, Quantum-dot Cellular Automata	08
		(QCA), QCA Clocking, Design Rules, Placement, Basic QCA Circuits using QCA Designer Software and their implementation	
UNIT-5	Module-7	Molecular Computing: Background of molecular electronics, Alderman's Experiment, DNA Computation, Bacteriorhodopsin, challenges before molecular computing. Optical Computing: Introduction, use of Optics for Computing, Optical Computing Paradigms, Ultrafast Pulse Shaping, Photonic Switches	08

40

Total No. of Hours

Learnin	After completing this course students will be able to:
g	Learn about the background on Nanocomputing
Outcom	 Understand the synthesis of nanomaterials and their application and the impact
es:	of nanomaterials on environment
	 Apply their learned knowledge to develop Nanomaterial's.

S · N	Name of Authors /Books /Publisher	Year of Publicatio n
0. 1.	G. Schmidt , Nanoparticles: From theory to applications , Wiley Weinheim, ISBN-	2006
	978-3-527-60404-3	
2.	S K Shukla and R I Bahar, <i>Nano, Quantum and Molecular Computing-Implications to High level design and Validation</i> , Illustrated Ed., Kluwer Academic Publishers, ISBN-978-1402080678	2004
3.	V Sahni and D Goswami, <i>Nanocomputing – an Introduction</i> , Tata McGraw Hill, ISBN- 978-0070248922	2008
4.	Leon L. Shaw, "Processing & properties of structural naonmaterials", Wiley , ISBN-978-0873395588	2003

Course Code: BME-O732

Course Name: Artificial Intelligence and Robotics

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	: Knowledge of "Kinematics of Machine" & Passion to learn the Subject			
Objectives:	 To present a problem oriented in depth knowledge of Artificial Intelligence and Robotics. To address the underlying concepts, methods and application of different Artificial Intelligence and Robotics. 			
Course Coordinat or	Mr. Sanjeev Kumar Lambha			
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus			

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Scope of AI: Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems, AI techniques- search knowledge, abstraction.	04
UNIT-2	Module-2	Problem solving: State space search; Production systems, search space control: depth first, breadth- first search, heuristic search - Hill climbing, best- first search, branch and bound. Problem Reduction, Constraint Satisfaction End, Means- End Analysis.	08

UNIT-3	Module-3	Knowledge Representation: Predicate Logic: Unification, modus pones, resolution, dependency directed backtracking. Rule based Systems: Forward reasoning: conflict resolution, backward reasoning: use of no backtrack. Structured Knowledge Representation: Semantic Nets: slots, exceptions and default frames, conceptual dependency, scripts.	10
UNIT-4	Module-4	Handling uncertainty and learning: Non- Monotonic Reasoning, Probabilistic reasoning, use of certainty factors, fuzzy logic. Concept of learning, learning automation, genetic algorithm, learning by inductions, neural nets.	08
UNIT-5	Module-5	Robotics: Robot Classification, Robot Specification, notation; Direct and Inverse Kinematics: Co-ordinates Frames, Rotations, Homogeneous Coordinates, Arm Equation of four Axis SCARA Robot, TCV, Inverse Kinematics of Four Axis SCARA Robot.	10
Total No.	of Hours		40

Learning	•	The student can identify different areas of Artificial Intelligence and Robotics.
Outcomes:	•	Can find the applications of all the areas in industry.

S	Name of Authors /Books	Year of
N	/Publisher	Publication
0.		
1.	E. Rich and K. Knight, "Artificial intelligence", 2 nd Ed., TMH, ISBN- 978-0070522633	1991
2.	N.J. Nilsson, "Principles of AI", Reprint Ed, Narosa Publ. House, 978-0934613101	1993
3.	Robin R Murphy, " <i>Introduction to AI Robotics</i> ", 1st Ed., PHI Publication, ISBN-978-0262133838	2001
4.	D.W. Patterson, "Introduction to AI and Expert Systems", PHI, ISBN- 978 0134771007	1990
5.	R. J. Schalkoff, "Artificial Intelligence - an Engineering Approach", Int. Ed., McGraw Hill, Singapore, ISBN- 978-0071009324	1992
6.	George Lugar, "Al-Structures and Strategies for and Strategies for Complex Problem solving", 6th Ed., Pearson Educations, ISBN- 978-0321545893	2008

Course Code: BME-O733

Course Name: ENERGY RESOURCES AND MANAGEMENT

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	First two years of undergraduate course of Engineering (Introductory, undergraduate
	level
	Physics and Chemistry)
Objectives:	• To provide students with a general awareness on the importance of energy and its conservation, its impact on society, various energy sources, energy conversion processes, energy management.
Course	Mr. Praveen Pandey
Coordinat	
or	
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)
	long answer type questions of ten (10) marks each and student shall be required to attempt
	any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Energy Resources and Their Utilization: Indian and global energy sources, Energy exploited, Energy planning, Energy parameters (energy intensity, energy-GDP elasticity), Introduction to various sources of energy, Solar thermal, Photovoltaic, Water power, Wind energy, Biomass, Ocean thermal, Tidal and wave energy, Geothermal energy, Hydrogen energy systems, Fuel cells, Decentralized and dispersed generation.	02
	Module-2	Solar Radiations: Extra-terrestrial radiation, Spectral distribution, Solar constant, Solar radiations on earth, Measurement of solar radiations, Solar radiation geometry, Flux on a plane surface, Latitude, Declination angle, Surface azimuth angle, Hour angle, Zenith angle, Solar altitude angle expression for angle between incident beam and the normal to a plane surface (no derivation), Local apparent time, Apparent motion of sun, Day length, Solar radiation data for India.	03
UNIT-2	Module-3	Solar Energy: Solar thermal power and it's conversion, Solar collectors, Flat plate, Performance analysis of flat plate collector, Solar concentrating collectors, Types of concentrating collectors, Thermodynamic limits to concentration, Cylindrical collectors, Thermal	03

		analysis of solar collectors, Tracking CPC and solar swing Solar thermal energy storage, Different systems, Solar pond. Applications, Water heating, Space heating & cooling, Solar distillation, solar pumping, solar cooking, Greenhouses, Solar power plants.	
	Module-4	Solar Photovoltaic System: Photovoltaic effect, Efficiency of solar cells, Semiconductor materials for solar cells, Solar photovoltaic system, Standards of solar photovoltaic system, Applications of PV system, PV hybrid system.	04
UNIT-3	Module-5	Biogas: Photosynthesis, Bio gas production Aerobic and anaerobic bio-conversion process, Raw materials, Properties of bio gas, Producer gas, Transportation of bio gas, bio gas plant technology & status, Community biogas plants, Problems involved in bio gas production, Bio gas applications, Biomass conversion techniques, Biomass gasification, Energy recovery from urban waste, Power generation from liquid waste, Biomass cogeneration, Energy plantation, Fuel properties, Biomass resource development in India.	04
	Module-6	Wind Energy: Properties of wind, Availability of wind energy in India, wind velocity, Wind machine fundamentals, Types of wind machines and their characteristics, Horizontal and Vertical axis windmills, Elementary design principles, Coefficient of performance of a wind mill rotor, Aerodynamic considerations in wind mill design, Selection of a wind mill, Wind energy farms, Economic issues, Recent development.	04
UNIT-4	Module-7	Electrochemical Effects and Fuel Cells: Principle of operation of an acidic fuel cell, Reusable cells, Ideal fuel cells, Other types of fuel cells, Comparison between acidic and alkaline hydrogen-oxygen fuel cells, Efficiency and EMF of fuel cells, Operating characteristics of fuel cells, Advantages of fuel cell power plants, Future potential of fuel cells.	04
	Module-8	Tidal power: Tides and waves as sources of energy, Fundamentals of tidal power, Use of tidal energy, limitations of tidal energy conversion systems. Hydrogen Energy: Properties of hydrogen in respect of its use as source of renewable energy,	04
		Sources of hydrogen, Production of hydrogen, Storage and transportation, Problems with hydrogen as fuel, Development of hydrogen cartridge, Economics of hydrogen fuel and its use.	
UNIT-5	Module-9	Thermoelectric Systems: Kelvin relations, power generation, Properties of thermoelectric materials, Fusion Plasma generators.	04

Module-10	Geothermal Energy: Structure of earth's interior, Geothermal sites, earthquakes & volcanoes, Geothermal resources, Hot springs, Steam ejection, Principal of working, Types of geothermal station With schematic representation, Site selection for geothermal power plants. Advanced concepts, Problems associated with geothermal conversion.	04
Module-11	Ocean Energy: Principle of ocean thermal energy conversion, Wave energy conversion machines, Power plants based on ocean energy, Problems associated with ocean thermal energy conversion Systems, Thermoelectric OTEC, Developments of OTEC, Economics. Impact of renewable energy generation on environment, Kyoto Protocol, Cost of electricity production from different energy Sources, Energy options for Indian economy.	04
Total No. of Hours		40

CO1	Understand of renewable and non -renewable sources of energy.
CO2	Gain knowledge about working principle of various solar energy systems.
CO3	Understand the applications of wind energy and wind energy conversion system.
CO4	Develop capability to do basic design of bio gas plant.
CO5	Understand the applications of different renewable energy sources like ocean, thermal, hydro, geothermal energy etc.

S N o.	Name of Authors /Books /Publisher	Year of Publicatio n
1.	Bansal Keemann, Meliss," <i>Renewable energy sources and conversion technology</i> ", Tata Mc Graw Hill, Publisher, ISBN- 978-0074600238	1989
2.	Kothari D.P., "Renewable energy resources and emerging technologies", 2 nd Ed., Prentice Hall of India Pvt. Ltd., ISBN-978-8120344709	2011
3.	Rai G.D, "Non-Conventional energy Sources", Khanna Publishers., ISBN-978-8174090737	1988
4.	Ashok V. Desai, "Nonconventional Energy", New Age International Publishers Ltd., ISBN-978-8122402070	1990

Course Code: BME-O734

Course Name: Engineering System Design Optimization

= = = = = = = = = = = = = = = = = = =	
MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 00	

Prerequisites:	Mathematics	
Objectives:	The primary objective of this course is for students to gain knowledge to translate practical engineering design problems into mathematical optimization	
	problems	
	that can be solved using numerical methods for optimization.	
Course	Dr. Jasbir Singh, Dr. Lokesh Joshi	
Coordinat		
or		
NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A	
	shall contain of ten (10) short answer type questions of six (06) mark each and student	
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)	
long answer type questions of ten (10) marks each and student shall be required to any four questions. Questions shall be uniformly distributed from the entire syllal		

UNIT	Module	Course Content	No. of Hours
UNIT-1	Module-1	Introduction: Optimization problem formulation, optimization algorithms, applications and examples, different optimization methods available.	07
UNIT-2	Module-2	Single Variable Optimization: Optimization criteria, bracketing methods – Exhaustive search method, bound phase method; Region Elimination methods – Fibonacci search method, Golden search method; Gradient based methods – Newton Raphson method, Bisection method; Root finding using optimization technique.	09
UNIT-3	Module-3	Multi objective optimization: Optimization criteria, Different search methods, Unidirectional search, Direct search method – Evolutionary optimization method, Powell's conjugate direction method; Gradient based methods – Newton's method and Variable metric method.	09
UNIT-4	Module-4	Specialized Methods: Integer programming, Geometric programming, simulated annealing, Global optimization using - steep descent method, simulated annealing.	06
UNIT-5	Module-5	Genetic algorithms and evolutionary Approaches: Differences and similarities between Genetic algorithms and traditional techniques, operators of GA"s, Computer program for simulated annealing, Newton Raphson method, Evolutionary optimization method.	09
Total No.	of Hours		40

Learning Outcomes:	At the end of this course, students will be able to Demonstrate an understanding of how design optimization fits into the overall engineering design process. To formulate practical engineering design problems as well-posed optimization problems. To determine the advantages and disadvantages of applying different optimization techniques for a specific problem. To model and analyze multiobjective and multidisciplinary optimization problems.
-----------------------	--

S	Name of Authors /Books /Publisher	Year of
Ň		Publication
0.		
1.	P. Y. Papalambros and D. J. Wilde, <i>Principles of Optimal Design: Modeling and Computation</i> , 2nd edition, Cambridge University Press, ISBN: 0521627273.	2000
2.	S. S. Rao, <i>Engineering Optimization: Theory and Practice</i> , 4th edition, John Wiley & Sons, ISBN: 0470183527.	2009
3.	K. Deb, <i>Optimization for Engineering Design</i> , 2nd edition, PHI Learning Pvt. Ltd., ISBN: 8120346785.	2009
4.	K. Deb, <i>Multi objective optimization using Evolutionary algorithms</i> ", John Wiley, ISBN: 9780471873396	2001
5.	H. A. Taha, <i>Operations Research-An Introduction</i> , Prentice Hall, ISBN: 9780134480176	2017