

Revised Syllabus (Effective from the session 2025-26)

GurukulaKangri (Deemed to be University), Haridwar Faculty of Engineering & Technology B. Tech. Electrical Engineering

Third Year Semester-V

S. No	COURSE CODE	COURSE TITALE PERIODS			EVALUATION SCHEME			ESE	SUBJECT TOTAL		
				THE	NDX/	SESSION	NAL E	VALU	ATION		
	T			THE							_
		(L	T	P	CREDIT	CT	TA	TOTAL		
1	BEE-C 511	Power System-I	3	0	0	3	20	10	30	70	100
2	BEE-C 512	Control System	3	0	0	3	20	10	30	70	100
3	BEE-C 513	Electric Drives & Their Control	3	0	0	3	20	10	30	70	100
4	BEE-M 001	Universal Human Values	3	0	0	3	20	10	30	70	100
5	BEE-O XXX	Open Elective-I	3	0	0	3	20	10	30	70	100
6	BXX- PXXX	Program Elective-I	3	0	0	3	20	10	30	70	100
	101			PRACT	ICA	L	- 11			1	4
7	BEE-C 561	Power System-I Laboratory	0	0	2	1	10	05	15	35	50
8	BEE-C 562	Control System Laboratory	0	0	2	1	10	05	15	35	50
9	BEE-C 563	Electric Drives Laboratory	0	0	2	1	10	05	15	35	50
10	BEE-S 569	Summer Training and Internship Program-I/ Mini Project (3-4 Weeks) To be pursued during summer vacation, submit a certificate of completion in the department (in summer break after IV semester exam and will be assessed during V semester)									
	Т	OTAL	18	0	6	22	150	75	225	525	800

Program Elective-I

Open Elective-I

1. BCE-P 515 Object Oriented Programming Using C++

2. BEE-P 516 Energy Audit

1.BEE-O 517 Industrial Electrical Systems **2.**BEE-O 518 Sensor and Transducers

L	Lecture	T	Tutorial	C	Discipline Specific Course
CT	Cumulative Test	TA	Teacher Assessment	ESE	End Semester Examination
BEE	Electrical Code	BET	Electronics Code	0	Open Elective

Course Code: BEE-C511 Course Name: Power System-I

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
LTP	Credit :3
3 00	

Prerequisites:	Basic Electrical Engineering, Electrical Machines-I, Electrical Machines-II		
Objectives:	Familiarize the students with the basic concept and structure of power system.		
	2. Study the different Sources of energy and supply system		
	3. Understand the overhead and underground transmission system		
	4. Understand the corona interference and mechanical consideration		
	5. Study the neutral grounding, EHV AC and HVDC transmission		
Course	Dr. Ashish Dhamanda		
Coordinator	St () 1/0/7		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight(08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of	POs	PSOs Mannad
ID III 1		T 1 i CD C	Hours	Mapped	Mapped
UNIT-1	Module-I Basic	Evolution of Power Systems and	04	PO1/ PO2/ PO3/ PO4	PSO1/PSO3
(0)		Present-Day Scenario, Structure of			
77	Concepts	a power system: Bulk Power Grids	- 11	PO6/ PO8/	I
	18	and Micro-grids. Single line		PO9/	
C 4		Diagram of Power system, Brief	VIII DO	PO10/PO12	→ > b +
-01		description of power system			
		Elements: Synchronous machine,		15	
	8	transformer, transmission line, bus			*
		bar, circuit breaker and isolator.	ALLEY		
4	Module-II	Sources of electric energy:	03	PO1/ PO2/	PSO1/PSO3
	Power	conventional and nonconventional Sources; Renewable and Non-	1	PO6/ PO8/	
	Generation	Renewable Energy Sources. Energy	100	PO10/PO12	
		Storage.	CONT.		
UNIT-2	Module-III	Different kinds of supply system	02	PO1/ PO2/	PSO1/PSO2/P
	Supply	and their comparison, choice of		PO3/ PO4	SO3
	System	transmission voltage.	0000	PO6/ PO8/	
	,			PO9/	
				PO10/PO12	
	Module-IV	Configurations, types of	03	PO1/PO2/	PSO1/PSO2/P
	Transmission	conductors, skin effect, Kelvin's		PO3/ PO4	SO3
	Lines	Law, Proximity Effect.		PO6/PO9/	
				PO10/PO12	
	Module-V	Calculation of inductance and	04	PO1/ PO2/	PSO1/PSO2/P
	Overhead	capacitance of single phase,		PO3/	SO3
	Transmission	three phase transmission lines,		PO4/PO5	
	Lines	Representation		PO6/ PO7/	
		and performance of short, medium		PO9/	
		and long transmission lines, Ferranti		PO10/PO12	
		effect. Surge impedance loading,		2 310,1 312	
		ABCD, h, Image Parameters.			

UNIT-3	Module-VI Corona and Interference	Phenomenon of corona, corona formation, calculation of potential gradient, corona loss, factors affecting corona, methods of reducing corona and interference. Electro static and electromagnetic interference with communication lines.	04	PO1/PO2/ PO3/ PO4/PO5 PO6/PO7/ PO9/ PO10/PO12	PSO1/PSO2/P SO3
	Module-VII Overhead line Insulators	Type of insulators and their applications, potential distribution over a string of insulators, methods of equalizing the potential, string efficiency.	04	PO1/PO2/ PO3/ PO4/PO5 PO6/PO7/ PO9/ PO10/PO12	PSO1/PSO2/P SO3
UNIT-4	Module-VIII Mechanical Design of transmission line	Catenary curve, calculation of sag & tension, effects of wind and ice loading, sag template, vibration dampers. Insulated cables: Type of cables and their construction, dielectric stress, grading of cables, insulation resistance, capacitance of single phase and three phase cables, di electric loss, heating of cables.	08	PO1/ PO2/ PO3/ PO4/PO5 PO6/ PO7/ PO9/ PO10/PO12	PSO1/PSO2/P SO3
UNIT-5	Module-IX Neutral Grounding	Necessity of neutral grounding, various methods of neutral grounding, earthing transformer.	04	PO1/ PO2/ PO3/ PO4/PO5 PO6/ PO7/ PO9/ PO10/PO12	PSO1/PSO2/P SO3
Total No. 6	Module-X EHV AC and HVDC Transmission	Introduction to EHV AC and HVDC transmission and their comparison, use of bundle conductors, kinds of DC links, and incorporation of HVDC into AC system.	04	PO1/PO2/ PO6/PO8/ PO10/PO12	PSO1/PSO3
Total No. of	Hours		40	IH.	

Course	Outcomes:
--------	-----------

- To define the power system elements, configurations and types of conductors, type
 of insulators and their applications.
- 2. To explain the evolution of power systems and present-day scenario, structure of a power system: bulk power grids and micro-grids, electrostatic and electromagnetic interference with communication lines, phenomenon of corona, corona formation, necessity of neutral grounding, earthing transformer, introduction to EHV ac and HVDC transmission and their comparison, use of bundle conductors.
- To extend the sources of electric energy: conventional and nonconventional, renewable and non-renewable energy sources, energy storage, sag template, vibration dampers, kinds of dc links, and incorporation of HVDC into ac system,
- 4. To illustrate the single line diagram of power system, different kinds of supply system and their comparison, choice of transmission voltage, type of cables and their construction, dielectric stress, grading of cables, insulation resistance, capacitance of single phase and three phase cables, dielectric loss, heating of cables.
- 5. To apply the Kelvin's law, skin effect, proximity effect, Ferranti effect. surge impedance loading, ABCD, h, image parameters, representation and performance of short, medium and long transmission lines, various methods of neutral grounding.
- 6. To Solve the inductance and capacitance of single phase, three phase transmission line, calculation of potential gradient, corona loss, factors affecting corona, methods of reducing corona and interference, potential distribution over a string of insulators, methods of equalizing the potential, string efficiency, catenary curve, calculation of

	The state of the s
sag & tension, effects of wind and ice loading.	

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	C.L. Wadhwa, Electrical Power Systems, New age international Ltd. Third Edition	2018
2.	Thomas Over by e, J. Duncan Glover, Mulkutla .S. Sarma, Power System: Analysis & Design, C engage Learning India Private Limited.	2011
3.	Prabha Kundur, Power System Stability And Control, McGraw Hill Education	2006
4.	B.R. Gupta, Power System Analysis and Design, Third Edition, S.Chand & Co.	2005
5.	D.P Kothari, I.J Nagrath. Modern Power System Analysis, McGraw Hill Education	2022
5.	D.P Kothari, I.J Nagrath, Power System Engineering 3rd Edition, McGraw Hill Education	2019
7.	W.D. Stevenson, Element of Power System Analysis, McGraw Hill, USA	1982
3.	S.L. Uppal, Electric Power, Khanna Publishers, India	2013
).	S.N. Singh, Electric Power Generation, Transmission & distribution, PHI, New Delhi.	1987
0.	As <mark>fa</mark> q Hussain, 'Power <mark>S</mark> ys <mark>tem,</mark> CBS Publishers and Distributors, In <mark>dia</mark> .	1982
11.	M.V. Deshpande, Electrical Power System Design, Tata McGraw Hill.	1984

Course Code: BEE-C512 Course Name: Control System

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L TP	Credit :3
3 00	

Prerequisites:	Basic Electrical Engineering, Signals & Systems, and Engineering Mathematics.			
Objectives:				
Objectives.	Introduction and Basic concept of control system problem			
	2. Understand the Time Response Analysis			
	3. Understand the Frequency-response analysis			
	4. Introduction to Controller Design			
	5. Study and Understand the State variable Analysis			
Course	Mr. Gajendra Singh Rawat			
Coordinator				

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten(10) short answer type questions of six (06)markeachandstudentshall
	berequiredtoattemptanyfive(05)questions.Section-Bshallcontaineight(08)longanswer type
1	questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus

Module	Course Content	No. of	POs	PSOs
			2	Mapped
Module-I		09	PO1/	PSO1/ PSO3
				1303
	-			
problem			10/PO12	
8		-		
	• •	- Lund		
			8	
		08		PSO1/
				PSO3
Analysis		Br. A	9/PO10/PO1	
	specifications for second-order		2	
		0000		
	•			
Module-III		08	PO1/	PSO1/
Frequency-	_		PO2/PO3/P	PSO2/PSO
response			O4/PO5/PO6	3
analysis			/PO7/PO8/P	
-			O9/PO10/PO	
	Closed-loop frequency response.		12	
Module-IV	Stability, steady-state accuracy,	07	PO1/	PSO1/
Introduction to			PO2/PO3/P	PSO2/PSO
Controller			O4/PO5/PO6	3
Design			/PO7/PO8/P	
			O9/PO10/PO	
	Introduction to control problem Module-II Time Response Analysis Module-III Frequency-response analysis	Introduction to control problem Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra. Module-II Time Response Analysis Module-III Time Response Analysis Module-III Frequency-response Analysis Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion — gain and phase margin. Closed-loop frequency response. Module-IV Introduction to Controller Module-IV Introduction to Controller Mathematical models of physical systems. Control systems. Analysis and their models. Transfer function models of linear time-invariant systems. Popen Loop and Closed-loop first and second order systems Root-loci method systems. Root-loci method	Introduction to control systems. Control hardware and their problem models. Transfer function models of linear time-invariant systems. Feedback Control: Open Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra. Module-II Time Response Analysis Application of initial and final value theorem. Design specifications for second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci. Module-III Frequency-response analysis Relative stability criterion. Relative stability criterion. Relative stability using Nyquist criterion — gain and phase margin. Closed-loop frequency response. Module-IV Introduction to Controller Design of control systems. Root-loci method of feedback controller design. Design	Industrial Control examples. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra. Module-II Time Response Analysis Analysis Module-III Frequency-response analysis Module-III Frequency-response analysis Module-III Station of initial and final value theorem. Design specifications for second-order systems based on the time-response concept of Stability analysis. Root-Locus technique. Construction of Root-loci. Module-III Frequency-response analysis Module-IV Introduction to Controller Design Module-IV Introduction to Controller Design Mathematical models of physical polysical sability and polysical soft physical polysical polysical samples. Mathematical models of physical polysical systems. Root-locp and their polypopolypo (10/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1

		domain.Frequency-domainmethodsofdesign.Applicationo fProportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog and Digital implementation of controllers.		12	
UNIT-5	Module-V State variable Analysis	Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.	08	PO1/ PO2/PO3/P O4/PO5/PO6 /PO7/PO8/P O9/PO10/PO 12	PSO1/ PSO2/PSO 3
Total No. of I	Hours		40		

Course Outcomes:

- 1. To define the Industrial Control examples, Concept of Stability, Stability,
- 2. Explain the Control hardware and their models, Block diagram algebra, Standard test signals, Application of initial and final value theorem, Relative Stability analysis, Polar plots, Bode plots, Nyquist stability criterion, Closed-loop frequency response, steady-state accuracy, transient accuracy, disturbance rejection, Poleplacement by state feedback, Discrete-time systems. Difference Equations.
- 3. To Illustrate the Time response of first and second order systems for standard test inputs, Routh-Hurwitz Criteria, Relative stability using Nyquist criterion, gain and phase margin, Relationship between time and frequency response, insensitivity and robustness of control systems, Application of Proportional, Integral and Derivative Controllers, Analog and Digital implementation of controllers, State-space models of linear discrete-time systems. Stability of linear discrete-time systems, Concepts of state variables
- 4. To apply the Feedback Control: Open Loop and Closed-loop systems, Benefits of Feedback, Root-Locus technique, Construction of Root-loci,
- To model the Mathematical models of physical systems, Design specifications for second-order systems based on the time-response
- 6. To analysis the Transfer function models of linear time-invariant systems, Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design, Lead and Lag compensation in designs, State space model. Diagonalization of State Matrix, Solution of state equations. Eigenvalues and Stability Analysis. Concept of controllability and observability.

S.No.	Name of Authors /Books	Year of
	/Publisher	Publication
	FranklinG.F.,PowellJ.D.,Emami-NaeiniA.,FeedbackControlofDynamicSystems, Pearson,Upper Saddle River, New Jersey, 5th edition, 2006.	2006
2.	BenjaminC.Kuo, AutomaticControl Systems,JohnWileyIndiaPvt.Ltd.,8 th Edition.	2008
3.	Ashfaq Husain, HarroonAshfaq, Control Systems, Dhanpat Rai & Co. (P) Limited	2016
4.	OgataK.,ModernControlEngineering,Prentice-HallofIndiaPvtLtd.,NewDelhi,3 rd edition.	2000

Course Code:BEE-C513

Course Name: Electrical Drives& Their Control

MM:100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit:3
3 0 0	

Prerequisites:	Electrical Machines, Power Electronics, Control Systems.		
Objectives:	 To impart knowledge about fundamentals of Electric drives and control. Operational strategies of dc and ac motor drives as per different quadrant operations and to discuss. To develop a deep understanding of advanced electric drive systems and their control. To explore power electronic converters used for drive applications. To study performance characteristics of AC and DC motor drives under dynamic conditions. 		
Course Coordinator	Mr. AviralAwasthi		
X.	तपसा दवा य		

Note:	The question paper shall consist of two sections (Section-A and Section-B). Section-A		
-//	shall contain of ten (10) short answer type questions of six (06) marks each and student		
	shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long		
	answer type questions of ten (10) marks each and student shall be required to attempt any		
	four questions. Questions shall be uniformly distributed from the entire syllabus.		
100 416			

Unit	Module	Course Content	No. of Hours	POs Mapped	PSOs Mapped
UNIT-1	Module-I Fundamentals of Electric Drive	Electric Drives and its parts, Advantages of Electric Drive, Classification of Electric Drives, Speed-torque conventions and multi- quadrant operations, Constant torque and Constant power operation, Types of load, Load Torque: components, nature and classification.	08	PO1/PO2/P O3/PO10	PSO1/PS O2
UNIT-2	Module-II Dynamics of Electric Drives	Fundamental torque equation, Equivalent Values of Drive Parameters, classes of motor duty, Thermal model of motor for heating and cooling, Steady states stability of electric drives, transient stability of electric drives.	08	PO1/PO2/P O10	PSO1
UNIT-3	Module-III Electric Braking	Purpose and types of electric braking, braking of dc, Three phase induction motor. Dynamics during Starting and breaking: Calculation of acceleration time and energy loss during starting of dc shunt and 3-phase induction motors, Method of reducing energy loss during starting. Energy relation during braking, Dynamics during braking	08	PO1/PO2/P O4/PO10	PSO1

UNIT-4	Module-IV	Single phase and three phase controlled	08	PO1/PO2/P	PSO1/PS
	Power	converter feed separately excited dc		O3/PO4/PO	O3
	Electronic	motor drives (continuous conduction		10	
	Control of DC	only), dual controlled converter feed			
	Drives	separately excited dc motor drives,			
		Chopper control of separately excited			
		dc motor and dc series motor.			
UNIT-5	Module-V	Three phase induction motor drive:	08	PO1/PO2/P	PSO1/PS
	Power	static voltage control scheme, static		O3/PO4/PO	O2/PSO3
	Electronic	frequency control scheme (VSI, CSI,		6/PO11	
	Control of AC	and cyclo-converter based), slip power			
	Drives	recovery control schemes, Three Phase			
		Synchronous Motors: Self-control			
		schemes, Special Drivers: Switched	2		
	0	Reluctance motor, Brushless dc motor.	1/3		
Total No. of	Total No. of Hours		40	2	

Course Outcomes:	1.	Analyze the dynamics and torque-speed characteristics of electric drives.
	2.	Develop control strategies for efficient operation of DC and AC drives.
	3.	To estimate & solve harmonic and power factor related problems in controlling
10		AC and DC drives.
	4.	Analyze the dynamics and torque-speed characteristics of electric drives.
	5.	Develop control strategies for efficient operation of DC and AC drives.
TO JIA	6.	Design and implement advanced control for induction and synchronous motors.

S.No.	Name of Authors /Books / Publisher	Year of Publication
1.	G.K.Dubey, Fundamentals of Electrical Drives, Narosa.	2002
2.	S.K.Pillai, A First course on electric drives, New age international	1989
3.	S.L.Uppal, Electrical Power, Khanna Publishers, New Delhi	1992
4.	R.Krishnan, Electrical Motor Drives, PHI	2003
5.	G.K.Dubey, Power Semi- conductor controlled drives, Prentice Hall	1989
6.	S.A.Nasar, Boldea, Electrical Drives, Second Edition, CRC Press	2006
7.	M.A.Elsharkawi, Fundamentals of Electrical Drives, Thomson Learning	2000
8.	VedamSubrahmaniam, Electric Drives, TMH	2013

Course Code: BEE-M 001

Course Name: Universal Human Values

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L TP	Credit :3
3 00	

Prerequisites:	Openness to self-reflection, willingness to understand life and relationships.
Objectives:	 To help students understand the need, basic guidelines, content and process for value education. To develop a holistic perspective towards life, profession, and happiness. To make students sensitive to the role of relationships and human values in real life. To prepare engineers who can integrate technical competence with ethical responsibility. To enable students to evaluate their role as responsible engineers and citizens, ensuring that technological growth aligns with ethical, cultural, and societal wellbeing.
	Mr. Yoge <mark>sh Kum</mark> ar
Coordinator	
40	AUHI GOT

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten(10) short answer type questions of six(06) mark each and student shall be
	required to attempt any five(05) questions. Section-B shall contain eight(08) longanswer
	type questions of ten (10) marks each and student shall be required to attempt any four
13 4	questions. Questions shall be uniformly distributed from the entire syllabus.

IDIT	1 1 1 1	C C	NI C	DO.	DCO
UNIT	Module	Course Content	No. of	POs	PSOs
4	H		Hours	Mapped	Mapped
UNIT-1	Module-I	Need, basic guidelines, and content	08	PO6/PO7/P	PSO3
7 ~ 4	Introduction	of value education, Concept of		O8/PO12	
- ·)]	to Human	natural acceptance, Human			
7)		aspirations and happiness,			
	Values	Difference between animal and			
	M	human consciousness, Self-			
		exploration: Purpose and process			
UNIT-2	Module-II	Understanding the human being as	08	PO6/PO7/P	PSO2/PSO3
	Understanding	co-existence of self ('I') and body,		08	
	S	Needs of self and needs of body,			
	Harmony in	Body as an instrument of 'I',	90		
	the H <mark>uman</mark>	Harmony of self with the body –			
	Being	Sanyam and Swasthya, Exploring			
		happiness and prosperity within the	00		
		in <mark>dividual</mark>			
UNIT-3	Module-III	Values in relationships – respect,	08	PO6/PO7/P	PSO3
	Harmony in	trust, gratitude, affection, love, Nine		011	
	Human	universal values in relationships,			
		Exploring the meaning of justice in			
	Relationships	human relationships, Trust as the			
		foundation of relationships, Concept			
		of family as the basic unit of human			
		interaction			
UNIT-4	Module-IV	Interconnectedness of all units in	08	PO6/PO7/P	PSO1/PSO3
	Harmony in	nature, Four orders of nature –		O8/PO12	
	Nature and	material, plant, animal, and human,			
		Concept of balance and co-			
	Existence	existence, The role of humans in			
		ensuring ecological harmony,			

		C			
		Sustainability and responsibility			
		towards environment			
UNIT-5	Module-V Holistic Living and Professional Ethics	Holistic understanding of harmony at all levels of existence, Ethical human conduct and professional ethics, Role of universal human values in society and business, Vision of a universal human order – from family to world family, Case studies: Ethical dilemmas in engineering practice	08	PO6/PO7/P O8/PO11/PO 12	PSO2/PSO3
Total No. of	Hours		40		

Course Outcomes:	1.	Understand the need and process for value-based living.
	2.	Develop clarity in human aspirations, harmony, and ethical living.
	3.	Demonstrate respect and trust in human relationships.
	4.	Analyze the interconnection between humans, nature, and existence.
	5.	Apply universal human values in personal life, professional practice, and societal
/s ·		well-being.
/ (p		

S. No.	Name of Authors /Books /Publisher	Year of Publication
	R.R. Gaur, R. Sangal, G.P. Bagaria, A Foundation Course in Human Values and Professional Ethics, Excel Books	2010
2.	E.F. Schumacher, Small is Beautiful, Harper Perennial	1993
3.	A.N. Tripathi, Human Values, New Age International	2009
4.	S. K. Chakraborty, Foundations of Managerial Work – Contributions from Indian Thought, Himalaya Publishing	1998
5.	S. K. Chakraborty, Values & Ethics for Organizations: Theory and Practice, Oxford University Press	2001

Course Code: BCE-P515

Course Name: Object Oriented Programming Using C++

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L TP	Credit :3
3 00	

Prerequisites:	Basics of Computers.
Objectives:	Introduction to Object oriented Paradigm.
	2. Features of object-oriented programming, class and object: state, identity, and
	behavior
	3. Data Abstraction and Data Hiding
	4. Encapsulation, Inheritance and polymorphism.
	5. Inheritance in OO design.
	6. Implementing OO language features.
	7. Memory management.
	8. Generic types and collections
/ .	
Course	Dr. Aman Tyagi
Coordinator	
40	TOHI GOT

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
h 1	type questions of ten (10) marks each and student shall be required to attempt any four
15 4	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of	POs	PSOs
UNII	Module	Course Content			- 10 0 0
		D : CC D:CC 1	Hours	Mapped	Mapped
UNIT-1	Module-I	Review of C, Difference between C	08	PO6/PO7/P	PSO3
204	Introduction	and C++, Cin, Cout, new, delete		O8/PO12	-
	& Class	operators, abstraction,			
7	Overview	encapsulation, inheritance,			
	Overview	polymorphism, Structured versus	EDB#		
	A	object-oriented development,			
	A	elements of object oriented			
	12	programming.	1		
	Yall	Class specification, class objects,	100		
	150	accessing class members, defining	CAL		
		member functions, outside member	90		
		functions as inline, accessing			
		member functions within a class,	-000		
		data hiding, access boundary of	00		
		objects revisited, empty classes,			
		pointers within a class, passing			
		objects as arguments, returning			
		objects from functions, friend			
		functions and friend classes,			
		constant parameters and member			
		functions, structures and classes,			
		static data and member functions,			
		class, objects and memory resource,			
		class design steps.			
UNIT-2	Module-II	Class revisited, constructors,	08	PO6/PO7/P	PSO2/PSO3
	Object	parameterized constructors,		08	1302/1803
		destructor, constructor overloading,		0.0	
	Initialization	order of construction and			
	and Cleanup				
	and Cleanup	destruction, constructors with			

Total No. of	Hours		40	1	
		exception handling model, exception handling constructs.			
	Handling	Introduction, error handling,			
	&Exception	stream class.	-000		
	with Files	of objects, file input/output with			
	Computation	access to a file, saving and retrieving		12	
	Stream	file modes, file pointers, sequential		O8/PO11/PO	
UNIT-5	Module-V	classes, opening and closing of files,	08	PO6/PO7/P	PSO2/PSO3
INIT 5	Module V	Introduction, hierarchy of file stream	00	DOC/DO7/D	DCO2/DCO2
	H	arguments, class templates.			
	di.	multiple arguments function templates, user defined template			
	Templates	overloaded function templates,			
	g with	Introduction, function templates,			
	Programmin	towards environment.			
	eric	Sustainability and responsibility			
	Classes&Gen	ensuring ecological harmony,			
	and	existence, The role of humans in		- 10	
		Concept of balance and co-		- 14	
	Functions	material, plant, animal, and human,		06/1 012	
J1111-T	Virtual	nature, Four orders of nature –	00	O8/PO12	1501/1505
UNIT-4	Module-IV	Interconnectedness of all units in	08	PO6/PO7/P	PSO1/PSO3
		base classes, hybrid inheritance.		PA	
		multipath inheritance and virtual		8	
		inheritance, hierarchical inheritance,	92	A	
		multilevel inheritance, multiple	407		
	-37	overloaded member functions,	100		
	La -	classes, constructors invocation and data members initialization,		. (%)	
	1. 0.	classes, destructors in derived		7/	
	10	accessibility, constructors in derived			
		inheritance, inheritance and member		2	
	Inheritance	class declaration, forms of		O11	
UNIT-3	Module-III	Introduction, class revised, derived	08	PO6/PO7/P	PSO3
		overloading with friend functions.			
		between objects of different classes,			
		objects and basic types, conversion			
		basic data types, conversion between			
		conversion, conversion between			
		arithmetic operators, data			
		binary operator overloading,			
		increment/decrement operators,			
		operator return values, limitations of			
		overloading, operator keyword,			
		operators, unary operator			
		Introduction, over loadable			
		constructors and destructors.			
		default arguments, copy constructor, static data members with			

Course Outcomes:

- 1. Specify simple abstract data types and design implementations, using abstraction functions to document them.
- 2. Recognize features of object-oriented design such as encapsulation, polymorphism, Inheritance.
- 3. Name and apply some common object-oriented design patterns and give examples of their use.
- 4. Prepare for competitive programming by implementing the concepts learned

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	E. Bala guru samy, Object Oriented Programming with C++, TMH	Latest
2.	S. B.Lippman& J. Lajoie, C++ Primer, Addison Wesley	Latest
3.	G. Booch, Object Oriented Design & Applications, PHI	Latest

Course Code: BEE-P 516 Course Name: Energy Audit

MM:100	Sessional: 30
Time:4 Hr.	ESE: 70
L TP	Credit: 0
30 0	

Prerequisites:	Knowledge of Electrical Machines, Power Systems, and Energy Management Basics.
Objectives:	 To understand the need and importance of energy auditing in industries and commercial buildings. To develop capability in identifying energy saving opportunities through audits. To learn methods, tools, and instruments used in energy auditing. To introduce the process of audit reporting, compliance, and economics of energy saving. To provide an understanding of energy systems and the need for energy
	management.
Course Coordinator	Mr. Lokesh Bhardwaj

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
10	shall contain of ten (10) short answer type questions of six (06) mark each and student
	shall be required to attempt any five (05) questions. Section-B shall contain eight
	(08)long answer type questions of ten (10) marks each and student shall be required to
	attempt any four questions. Questions shall be uniformly distributed from the entire
	syllabus
1-0	

UNIT	Module	Course Content	No. of Hours	Posmapped Posmapped	PSOs mapped
UNIT-1	Module-I Basics of Energy Auditing	Introduction to Energy Audit – Definition and scope, Types of energy audit – Preliminary and Detailed, Need for energy audit and energy conservation, Roles and responsibilities of an Energy Auditor, Energy scenario: global and Indian perspective	08	PO6/PO7/PO 11	
UNIT-2	Module-II Energy Audit Methodology	Energy audit methodology and phases, Walk-through audit and checklist, Data collection and energy flow diagram, Load analysis and energy use index (EUI), Case study-based approach	08	PO1/PO2/PO 6/PO10	PSO1/PSO2
UNIT-3	Module-III Tools and Instrumentation	Instruments for measuring electrical parameters: power analyzer, data logger, lux meter, IR thermometer, etc., Instrument calibration and accuracy, Measurement of temperature, airflow, lighting levels, Smart meters and IoT-based audit tools, Safety precautions during audit	08	PO2/PO4/PO 6/PO10	PSO1/PSO3
UNIT-4	Module-IV Sector-Specific Energy	Electrical system audit: transformers, motors, power factor, harmonics, Lighting system audit, HVAC and compressed air system audit, Boiler	08	PO2/PO4/PO 6/PO8	PSO1/PSO3

	Auditing	and steam system audit (brief), Case			
		studies from commercial and			
		industrial sectors			
UNIT-5	Module-V	Cost-benefit analysis and financial	08	PO6/PO8/PO	PSO2/PSO3
	Energy	indicators: ROI, NPV, IRR, Payback		11/PO12	
	Economics and	period, Life Cycle Cost Analysis			
	Audit	(LCCA), Preparation and structure of			
	Reporting	audit report, Post-audit			
	Reporting	implementation and monitoring, Legal			
		and regulatory aspects			
	Tota	No. of Hours	40		
Course	 Underst 	and the concept, scope, and types of ene	ergy audits.		
Outcomes:	2. Perform step-by-step energy audits using proper methodology and data analysis.				
	3. Operate and apply audit instruments for various measurements.				
	4. Evaluate energy performance of different systems in industrial and commercial sectors.				
	5. Analyze financial viability of energy-saving measures and prepare detailed audit reports.				
	0				

S.No.	Name of Authors/Books/Publisher	Year of Publication
1./	Bureau of Energy Efficiency, Energy Manager Guide Book Vol. I-IV	Latest
2.	Sonal Desai, Handbook of Energy Audit, McGraw-Hill	2021
3.	C.B. Smith, Energy Management Principles, Pergamon Press	2015
4.	S. Audin, Electrical Systems and Energy Auditing, CRC Press	2012
5.	Albert Thumann, Handbook of Energy Audits, Fairmont Press	2016

Course Code: BEE-O 517

Course Name: Industrial Electrical Systems

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 3
3 0 0	

Prerequisites:	Basic Electrical Engineering, Electrostatics			
Objectives:	To understand the electrical wiring systems for residential, commercial, and industrial consumers.			
	2. To represent electrical systems with standard symbols and drawings, including Single Line Diagrams (SLD).			
	3. To understand various components of industrial electrical systems.			
	4. To analyze and select the appropriate size for various electrical system			
	components.			
	5. To gain knowledge of electrical wiring systems for residential and industrial			
	electrical system components.			
Course	Mr. Gaurav Kumar			
Coordinator	तपसा दवा र			

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student
12 1	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)long
100	answer type questions of ten (10) marks each and student shall be required to attempt any
157	four questions. Questions shall be uniformly distributed from the entire syllabus
10 1 1 1	

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Electrical System Components	LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current,	06	PO1/PO2/ PO4/PO5/ PO6	PSO1/ PSO2/PS O3
	Module-II Electrical Installation	Characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices	04	PO1/ PO2/PO6	PSO1/PS O2
UNIT-2	Module-III Residential and Commercial Electrical Systems	Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and protection devices, earthing system calculations, requirements of commercial installation,	06	PO1/ PO2/PO4/ PO6	PSO1/ PSO2/PS O3
UNIT-3	Module-IV Industrial Electrical Systems I	HT connection, industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning	06	PO1/ PO2/PO5/ PO6	PSO1/PS O2

		Protection, Earthing design, Power factor			
		correction kVAR calculations, type of			
		compensation.			
UNIT-4	Module-V	Introduction to PCC, MCC panels.	07	PO1/PO4/	PSO1/
01111-4	Industrial	Specifications of LT Breakers, MCB and	07	PO5/PO6	PSO2
	Electrical	*		103/100	1302
		other LT panel components, DG Systems,			
	Systems II	UPS System, Electrical Systems for the			
		elevators, Battery banks, Sizing the DG,			
		UPS and Battery Banks, Selection of UPS			
		and Battery Banks.			
UNIT-5	Module-VI	Study of basic PLC, Role of in automation,	11	PO1/PO5/	PSO1
	Industrial	advantages of process automation, PLC		PO6	
	Electrical	based control system design, Panel	_ ^		
	System	Metering and Introduction to SCADA			
	Automation	system for distribution automation.	1/~		
			, 7		
Total No. o	of Hours		40		

Course	1. The Student Analyse and select the proper size of various electrical system
Outcomes:	components
10	2. Knowledge of electrical wiring systems for residential, components of industrial
	electrical systems.
. 1	3. Understand the electrical wiring systems for residential, commercial and
17- 11	industrial consumers, representing the systems with standard symbols and
12. 1	drawings, SLD.
1	4. Understand various components of industrial electrical systems.
100	5. Analyse and select the proper size of various electrical system components.

1 0		J A
	S.L Uppal and G.C Garg, "Electrical Wiring Estimation and Costing", Khanna publishers, 6th Edition, ISBN 81-7409-240-4	1987
	TejpalYogeshKharche, "Industrial Electrical Systems (IES)" Notion Press, 1 st Edition, ISBN 9798888834220.	2 023
	B. P. Patil and M.A Chaudhari "Industrial Electrical Systems – I", Nirali Publication, 2nd Edition ISBN 978-81-203-3569-1	2008

Course Code: BEE-O 518

Course Name: Sensor and Transducers

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 3
3 0 0	

Prerequisites:	Basic Electrical Engineering, Electrostatics, Electromagnetism					
Objectives:	To familiarize students with the construction and operating principles of various sensors and transducers.					
	2. To educate students about measuring instruments, measurementmethods, and the application of different transducers.					
	3. To enable students to remember and understand the fundamental principles of transducers and smart sensors.					
	4. To help students apply their knowledge of transducers and sensorsto comprehend digital instrumentation systems.					
	5. To provide students with the ability to analyze and evaluate theperformance of different sensors for various applications					
Course Coordinator	Mr.Gaurav Kumar					

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
12 1	shall contain of ten (10) short answer type questions of six (06) mark each and student
100	shall be required to attempt any five (05) questions. Section-B shall contain eight (08)long
157	answer type questions of ten (10) marks each and student shall be required to attempt any
10 11	four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Introduction Mechanical and Electromechanical sensor	Definition, principle of sensing & transduction, classification. Resistive (potentiometric type): Forms, material, resolution, accuracy, sensitivity. Strain gauge: Theory, type, materials, design consideration, sensitivity, gauge factor variation with temperature, adhesive, rosettes	06	PO1/PO2/ PO4/PO5/ PO6	PSO1/ PSO2/PSO 3
	Module-II Inductive sensor	common types Reluctance change type, Mutual inductance change type, transformer action type, Magneto strictive type, brief discussion with respect to material, construction and input output variable, Ferromagnetic plunger type, short analysis.	04	PO1/ PO2/PO6	PSO1/PSO 2
UNIT-2	Module-III Capacitive sensors	Variable distance-parallel plate type, variable area- parallel plate, serrated plate/teeth type and cylindrical type, variable dielectric	06	PO1/ PO2/PO4/ PO6	PSO1/ PSO2/PSO 3

		1 1 1 1 1 1			1
		constant type, calculation of sensitivity. Stretched diaphragm type: microphone, response characteristics.			
UNIT-3	Module-IV Piezoelectric element	piezoelectric effect, charge and voltage co-efficient, crystal model, materials, natural & synthetic type, their comparison, force & stress sensing, ultrasonic sensors	06	PO1/ PO2/PO5/ PO6	PSO1/PSO 2
UNIT-4	Module-V Thermal sensors	: Material expansion type: solid, liquid, gas &vapor Resistance change type: RTD materials, tip sensitive & stem sensitive type, Thermister material, shape, ranges and accuracy specification. Thermoemf sensor: types, thermoelectric power, general consideration, Junction semiconductor type IC and PTAT type. Radiation sensors: types, characteristics and comparison.	05	PO1/PO4/ PO5/PO6	PSO1/ PSO2
UNIT-5	Module-VI Magnetic sensors	Sensor based on Villari effect for assessment of force, torque, proximity, Wiedemann effect for yoke coil sensors, Thomson effect, Hall effect, and Hall drive, performance characteristics.	08	PO1/PO5/ PO6	PSO1
40	Module-VII Radiation sensors	LDR, Photovoltaic cells, photodiodes, photo emissive cell types, materials, construction, response. Geiger counters, Scintillation detectors, Introduction to smart sensors	05	PO1/PO5/ PO6	PSO1
Total No. o	of Ho <mark>urs</mark>	No.	40	15/1	i.

1 977 souls fath
1. Remember and understand the basic principles of transducers and smart sensors.
 Apply the knowledge of transducers and sensors to comprehend digita instrumentation systems.
3. Analyze and evaluate the performance of different sensors for various applications.
4. Design and create a system using appropriate sensors for a particular application
5. Classify and explain with examples of transducers, including those fo measurement of temperature, strain, motion, position and light

S. No.	Name of Authors /Books /Publisher	Year of Publication	
1.	A.K. Sawhney "Electrical and Electronic Measurements and Instrumentation", DhanpatRai and Sons, 18th Edition, ISBN 81-7700-016-0	2008	
2.	Clarence W.de Silva, "Sensor systems: Fundamentals and applications" CRC Press, Edition, ISBN 9781498716246.	2016	

			F
3.	D.V.S. Murthy "Transducers and Instrumentation", PHI Publication, 2nd Edition ISBN 978-81-203-3569-1	2008	

POWER SYSTEM- I LABORATORY **BEE-C 561**

MM: 50 Sessional: Time: 2 Hr ESE: 35 LTP **Credit:** 002

LIST OF EXPERIMENTS

- To study the performance of a long transmission line under no load & light load conditions.
- To study phase displacement between the current & voltage at input of line using transmission line trainer
- Measurement of input impedance and attenuation of transmission line using transmission line trainer kit.
- Measurement of characteristics of transmission using transmission line trainer kit.
- To find the resistivity of the earth using a hand driven earth tester.
- To study the performance characteristics of a typical D.C. distribution system (Radial Configuration).
- To determine the ABCD parameters of transmission line.

 To determine the h parameters and Image parameters of transmission line.
- To study the voltage distribution across a string insulator and calculate string efficiency.
- 10. To test the breakdown voltage of the transformer oil by transformer oil testing set.

Note: Below experiments are to be performed using Virtual Labs (An initiative of the Ministry of Education, Government of India). (5 Experiments are Compulsory)

- To study the Synchronization of alternator with infinite bus bar.
- To determine the direct axis reactance (X_d) and quadrature axis reactance (X_q) of synchronous machine.
- To determine positive sequence, negative sequence and zero sequence reactances of an alternator.
- To measure the dielectric Strength of transformer oil.
- To Study the effect of different shape of electrodes on dielectric (air) breakdown.
- To Study the gas actuated Buchholz relay for oil filled transformer.
- To Study the over-current relay and the effect of PSM and TSM.
- To determine the sub-transient (x_d'') , transient (x_d') and steady state reactance (x_d) of a synchronous machine.
- To Study the Ferranti Effect of a transmission line/cable.
- 10. To study the differential Protection of a three phase delta-delta connected transformer.
- 11. To study the Protection of a three phase Induction Motor using Numerical Relay.

CONTROL SYSTEM LABORATORY BEE-C 562

MM: 50
Time: 2 Hr
ESE: 35
L T P
Credit: 1

LIST OF EXPERIMENTS

- 1. To study the performance of various types of controllers (P, PI, PID) used to control the temperature of an oven & find
 - (a) Open loop response of oven & its transfer function
 - (b) Closed loop response of oven using P, PI and PID controller.
- 2. To study the performance characteristics of DC motor angular position control system.
- 3. To study the performance characteristics of DC motor angular position error detector using potentiometer.
- 4. To study the Linear Variable Differential Transformer (LVDT) & draw its characteristic.
- 5. To study the performance of Strain Gauge & draw the following characteristics:
 - (a) Strain vs. Weight
 - (b) Strain vs. Strain Gauge Resistance
- To study the performance of Resistance Temperature Detector (RTD) & draw the following characteristics:
 - (a) Time vs. Temperature (for heating)
 - (b) Time vs. Temperature (for cooling)
 - (c) Temperature vs. Resistance of RTD
- 7. To study the performance characteristics of analog P, PI and PID controllers on the simulated system.
- 8. To study the configuration and evaluate the performance characteristics of a feedback light control system.
- 9. To study digital control of a simulated system using a 6 bit microprocessor.
- 10. Study of the characteristics of Linear System Simulator trainer kit.

Note: Below experiments are to be performed using Virtual Labs (An initiative of the Ministry of Education, Government of India). (5 Experiments are Compulsory)

- 1. Pole-zero plot
- 2. First order unity feedback
- 3. Second order unity feedback system
- 4. Type zero-one-Two System
- 5. Study the effect of addition of zeros to the forward path transfer function of a closed loop system
- 6. Study the effect of addition of poles to the forward path transfer function of a control system
- 7. To obtain root locus for a given transfer function of the system
- 8. To obtain bode plot for a given transfer function of the system
- 9. Nyquist plot of a second order system
- 10. To study the effect of PI, PD and PID controller on a control system

ELECTRICAL DRIVES LABORATORY BEE-C 563

MM: 50
Time: 2 Hr
ESE: 35
L T P
0 0 2

LIST OF EXPERIMENTS

- 1. Performance & speed control of D.C. drive using 3-phase full Converter.
- 2. To perform speed control of separately excited dc motor using chopper.
- 3. Speed control of dc motor using closed loop and open loop.
- 4. Study and analyze the performance of four quadrant operation of chopper fed dc motor drive at different firing angles.
- 5. Determination of speed and output voltage of 3-phase A.C. Voltage controller fed induction motor drive.
- 6. Performance & speed control of 3-phase slip ring Induction motor by Static Rotor Resistance controller.
- 7. DSP based V/F Control of 3-phase Induction motor.
- 8. DSP based Speed control of BLDC motor.
- 9. Study of Chopper fed DC Drive.
- 10. Study of AC Single phase motor-speed control using TRIAC.

Note: Below experiments are to be performed using Virtual Labs (An initiative of the Ministry of Education, Government of India). (5 Experiments are Compulsory)

- 1. Introduction to PLC and Introduction to digital I/O interface to PLC
- 2. Introduction to ladder logic
- 3. PLC On-Delay Timer Instruction
- 4. PLC Off-Delay Timer Instruction
- 5. PLC Retentive Timer On Instruction
- 6. PLC Count-Up instruction
- 7. PLC Count-Down instruction
- 8. Garage Shutter Opening and Closing Using PLC
- 9. Container Filling Process Using PLC
- 10. Simultaneous output interlock using PLC
- 11. Maximum Simultaneous Operations Limiter using PLC
- 12. Motor forward and reverse direction control using PLC

Revised Syllabus (Effective from the session 2025-26)

Gurukula Kangri (Deemed to be University), Haridwar Faculty of Engineering & Technology B. Tech. Electrical Engineering

Third Year Semester-VI

S.	COURSE	COURSE TITALE	TITALE PERIODS EVALUATION SCHEME				SUBJECT TOTAL				
No	CODE				SESSIONAL EVALUATION				ESE		
	I		,	ТНЕ	ORY						
		(14	L	T	P	CREDIT	CT	TA	TOTAL		
1	BEE-C 611	Power System-II	3	0	0	3	20	10	30	70	100
2	BEE-C 612	Computer Aided Design of Electrical Machines with Programming		0	0	3	20	10	30	70	100
3	BET-C 613	Microprocessors and Interfacing	3	0	0	3	20	10	30	70	100
4	BEE-C 614	Generation of Electrical Energy	3	0	0	3	20	10	30	70	100
5	BEE-P XXX	Program Elective-II	3	0		3	20	10	30	70	100
6	BEE-O XXX	Open Elective-II	3 0 0		3	20	10	30	70	100	
	10 1	8	PI	RAC	TICA	L	- 11		18		4
7	BEE-C 661	Power System-II Laboratory	0	0	2	1	10	05	15	35	50
8	BEE-C 662	Computer Aided Design of Electrical Machine Laboratory	0	0	2	1	10	05	15	35	50
9	BET-C 666	Microprocessors and Interfacing Laboratory	0	0	2	1	10	05	15	35	50
		TOTAL	18	0	6	21	150	75	225	525	750

Program Elective-II

Open Elective-II

1. BEE-P 615 Digital Control System

1. BEE-O 617 Fundamentals of AI

2. BEE-P 616 Fundamentals of Drone Technology

2. BEE-O 618 Soft Computing

I	1	Lecture	T	Tutorial	C	Discipline Specific Course
(СТ	Cumulative Test	TA	Teacher Assessment	ESE	End Semester Examination
В	BEE	Electrical Code	O	Open Elective	P	Program Elective

Course Code: BEE-C 611 Course Name: Power System -II

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Electrical Machines, Power Systems-I	
Objectives:	1. Representation of power system components, Symmetrical components, Symmetrical	
	and Unsymmetrical fault analysis.	
	2. The problem and solution of Load Flows.	
	3. Stability in Power System.	
	4. Travelling Waves in Power System	
	5. Overview of Energy Control Centre Functions.	
Course	Dr. Ashish Dhamanda	
Coordinator		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
A 3	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
10	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Representation of Power System Components	Synchronous machines, Transformers, Transmission lines, Impedance and reactance diagram. Per Unit System, Changing the base of per unit quantities, Advantages of per unit system.	04	PO1/ PO2/ PO3/ PO4 PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12	PSO1/PSO 3
	Module-II Symmetrical components	Symmetrical Components of unbalanced pharos, power in terms of symmetrical components, sequence impedances and sequence networks.	03	PO1/ PO2/ PO3/ PO4 PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12	PSO1/PSO 3
UNIT-2	Module-III Symmetrical fault analysis	Transient in R-L series circuit, calculation of 3-phase short circuit current and reactance of synchronous machine, internal voltage of loaded machines under transient conditions.	04	PO1/ PO2/ PO3/ PO4 PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12	PSO1/PSO 2/PSO3
	Module-IV Unsymmetrical faults	Analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generators and power system network with and without fault impedance.	04	PO1/ PO2/ PO3/ PO4/PO5/ PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12	PSO1/PSO 2/PSO3

UNIT-3 Module-V Load Flows Load flow Introduction, bus classifications in details, Bus admittance matrix (Y Bus), development of load flow equations, load flow solution using Gauss Scidel and Newton-Raphson method, approximation to N-R method, line flow equations and fast-decoupled method, Economic dispatch and optimal power flow. UNIT-4 Module-VI Stability in Power System Stability and Stability limit, Steady state stability study, Swing Equations of asynchronousmachine, Poweran glecurve, andequalarearciterion, transientstabilitystudybyequalare a Criterion and step-by-step method. Factors affecting steady state and transient stability and methods of improvement. Wave sin Power System Waves in Power System Module-VII Travelling Waves in Power System Module-VIII Towelling Transmission lines, velocity of propagation, Lightning and withing surges, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewley lattice diagram, protection of equipment and line against traveling waves. Module-VIII Overview of Energy Control Centre Functions Total No. of Hours Load flow Introduction, bus glass, Bus policy fload flow admittance matrix (Y Bus), developed and how admittance matrix (Y Bus), developed propagation, Lightning and transient stability and method, approximation for uniform PolityPoliz PolityPoliz PolityPoliz Total No. of Hours Load flow solution and Interaction, bus admittance matrix (Y Bus), developed propagation, developed propagation, developed propagation, Lightning and propagation, Lightning and suite diagram, protection of equipment and line against traveling waves. Control Centre Functions Total No. of Hours Load flow solution and Interaction, to No. PolityPoliz Load flow solution and Emergency PolityPoliz Load flow solution and Emergency PolityPoliz Load flow equations and fast decoupled method, PolityPoliz Load flow solutions and fast decoupled and flow polityPoliz Load flow solutions and fast decoupled and polity polity polity polity polity						F
Stability in Power System Stability and Stability study, Swing Equations of asynchronousmachine, Poweran glecurve, and equal area criterion, transients tability study by equal are a Criterion and step-by-step method. Factors affecting steady state and transient stability and methods of improvement. UNIT-5 Module-VII Travelling Waves in Power System Power System Module-Vili Overview of Energy Control Centre Functions Control Centre Functions Stability and Stability study, Swing Equations of asynchronousmachine, Power and glecurve, and equation of asynchronousmachine, Poweran glecurve, and equations of asynchronousmachine, Poweran glecurve, and equation, transies to distribute and methods of improvement. Wave equation for uniform Transmission lines, velocity of propagation, Lightning and switching surges, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewley lattice diagram, protection of equipment and line against traveling waves. SCADA systems, Preventive Control Centre Functions SCADA systems, Preventive Control Pool/Pool/Pool/Pool/Pool/Pool/Pool/Po		Load Flows	classifications in details, Bus admittance matrix (Y Bus), development of load flow equations, load flow solution using Gauss Seidel and Newton-Raphson method, approximation to N-R method, line flow equations and fast-decoupled method, Economic dispatch and optimal power flow.		PO3/ PO4/PO5/ PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12	2/PSO3
UNIT-5 Module-VII Travelling Waves in Power System Module-VIII Overview of Energy Control Centre Functions Module-VII Travelling Wave equation for uniform Transmission lines, velocity of PO3/PO4/PO5/PSO3 PO6/PO7/PO8/PO9/PO8/PO9/PO1/PO1/PO12 PSO1/PSO PO3/PO6/PO7/PO8/PO9/PO1/PO1/PO12 PSO1/PSO PO6/PO7/PO8/PO9/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1/PO1	UNII-4	Stability in Power	Steady state stability study, Swing Equations of asynchronousmachine,Poweran glecurve,andequalareacriterion,t ransientstabilitystudybyequalare a Criterion and step-by-step method. Factors affecting steady state and transient stability and		PO3/ PO4/PO5/ PO6/ PO7/ PO8/ PO9/ PO10/	
Total No. of Hours 40	UNIT-5	Travelling Waves in Power System Module-VIII Overview of Energy Control Centre	Wave equation for uniform Transmission lines, velocity of propagation, Lightning and switching surges, surge impedance, reflection and transmission of traveling waves under different line loadings. Bewley lattice diagram, protection of equipment and line against traveling waves. SCADA systems, Preventive Control and Emergency		PO3/ PO4 PO6/ PO7/ PO8/ PO9/ PO10/ PO11/PO12 PO1/ PO2/ PO3/ PO4/PO5/ PO6/ PO7/ PO8/ PO9/ PO10/	2/PSO3 PSO1/PSO
	Total No. of	Hours	To minimo	40	1011/1012	

	Outcomes:
Allrea	(lutcomac.
Course	Outcomes.

- 1. To define the Synchronous machines, Transformers, Transmission lines, Load Flow, Stability, Wave equation for uniform Transmission lines, velocity of propagation.
- Explain the Impedance and reactance diagram, Per Unit System, Symmetrical Components of unbalanced phasors, Transient in R-L series circuit, bus classifications, Bus admittance matrix, Stability limit, Steady state stability study, Swing Equations of a synchronous machine.
- To Illustrate the Advantages of per unit system, Economic dispatch and optimal power flow, Power angle curve and equal area criterion, reflection and transmission of traveling waves under different line loadings, Bewley lattice diagram.
- 4. To apply the Changing, the base of per unit quantities, power in terms of symmetrical components, calculation of 3-phase short circuit current and reactance of synchronous machine, development of load flow equations, transient stability

- study by equal area criterion and step-by- step method, protection of equipment and line against traveling waves.
- 5. To solve the load flow solution using Gauss Seidel and Newton-Raphson method, approximation to N-R method, line flow equations and fast-decoupled method
- 6. To analysis of single line to ground fault, line-to-line fault and Double Line to ground fault on an unloaded generator, power system network with and without fault impedance, load flow solution using Gauss Seidel and Newton-Raphson method, approximation to N-R method, line flow equations and fast-decoupled method, Factors affecting steady state and transient stability and methods of improvement, SCADA systems, Preventive Control and Emergency Control.

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	D.P Kothari, I.J Nagrath. Modern Power System Analysis, McGraw Hill Education	2022
	D.P Kothari, I.J Nagrath, Power System Engineering 3rd Edition, McGraw Hill Education	2019
3.	W.D. Stevenson, Element of Power System Analysis, McGrawHill, USA	1982
4.	C.L. Wadhwa, Electrical Power Systems, New age international Ltd. Third Edition	2018
A	S.L. Uppal, Electric Power, Khanna Publishers, India	2013
6.	S.N. Singh, Electric Power Generation, Transmission & distribution, PHI, New Delhi.	1987
7.	Asfaq Hussain,' Power System, CBS Publishers and Distributors, India.	1982
8.	B.R. Gupta, Power System Analysis and Design, Third Edition, S.Chand & Co.	2005
9.	M.V. Deshpande, Elec <mark>trical Power System Design, Tata McGrawHill.</mark>	1984
10.	Thomas Overbye, J. Duncan Glover, Mulkutla .S. Sarma, Power System: Analysis & Design, Cengage Learning India Private Limited.	2011
11.	Prabha Kundur, Power System Stability And Control, McGraw Hill Education	2006

Course Code: BEE-C 612 Course Name: Computer Aided Design of Electrical Machines with Programming

MM: 100	Sessional: 30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Electrical Machine-I, Electrical Machine-II, Knowledge of MATLAB
Objectives:	By the end of this section, you will be able to:
	1. Basic concept of design, limitation in design, standardization, modern trends in design and manufacturing techniques.
	2. Classification of insulating materials. Modes of heat dissipation & temperature risetime curves. Methods of cooling ventilation.
	 Design of Electrical Machines of Transformer, Rotating Machines etc. with flow charts. Computer aided design approaches analysis, synthesis and hybrid methods, Concept of optimization and its general procedure.
Course	Mr. Gajendra Singh Rawat
Coordinator	
73	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
100	contain of ten(10) short answer type questions of six (06) mark each and student shall be
10	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
at the state of th	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of	POs	PSOs
UNII	Module	Course Content	Hours		
/		Davis assessed of Assists Limitation		mapped	mapped
UNIT-1	Module-I	Basic concept of design, limitation	09	PO1/	PSO1/
	Basic	in design, standardization, modern	-	PO6/PO7/PO	PSO3
- I	Considerations	trends in design and manufacturing	Name of Street, or other Designation of the Owner, where the Owner, which	8/PO9/PO10/	
		techniques. Classification of		PO12	
- 1		insulating materials. Modes of heat			
	10	dissipation & temperature rise-time	- 100		
	8	curves. Methods of cooling			
		ventilation (induced &forced, radial		18	
	8	& axial), direct cooling & quantity		15	
		of cooling medium. Calculation of	100	157	
		total mmf and magnetizing current.	CAL		
		Specific permeance and leakage	90		
		reactance.			
		100	-00		
		Electrical Materials: Crystal			
		structures and defects, ceramic			
		materials, insulating materials,			
		magnetic materials basics, properties			
		and applications; ferrites, Ferro-			
		magnetic materials and components;			
		Basics of Nano materials and			
		Superconductors.			
		_	1		
UNIT-2	Module-II	Output equation design of core, yoke	08	PO1/	PSO1/
	Transformer	and windings, overall dimensions,		PO2/PO6/PO	PSO3
	Design	Computation of no-load current to	_	7/PO8/PO9/P	
	0	voltage regulation, efficiency and		O10/PO12	
		cooling system designs.		510/1 512	

UNIT-3	Module-III Design of Rotating Machines I	Output equations of rotating machines, specific electric and magnetic loadings, factors affecting size of rotating machines, separation of main dimensions, selection of frame size. Core and armature design of dc and 3-phase AC machines.	08	PO1/ PO2/PO3/PO 4/PO5/PO6/P O7/PO8/PO9 /PO10/PO12	PSO1/ PSO2/PS O3
UNIT-4	Module-IV Design of Rotating Machines II	Rotor design of three phase induction motors. Design of field system of DC machine and synchronous machines. Estimation of performance from design data.	07	PO1/ PO2/PO3/PO 4/PO5/PO6/P O7/PO8/PO9 /PO10/PO12	PSO1/ PSO2/PS O3
UNIT-5	Module-V Computer Aided Design	Philosophy of computer aided design, advantages and limitations. Computer aided design approaches analysis, synthesis and hybrid methods, Concept of optimization and its general procedure. Flow charts for the design of transformer, dc machine, three-phase induction and synchronous machines.	08	PO1/ PO2/PO3/PO 4/PO5/PO6/P O7/PO8/PO9 /PO10/PO12	PSO1/ PSO2/PS O3
Total No. of	Hours	LO	40	181	

Total 100 of Hours		.0
Course Outcomes:	1.	To Define the Basic concept of design, limitation in design, standardization, modern
		trends in design and manufacturing techniques,
	2.	To Explain Classification of insulating materials. Modes of heat dissipation &
		temperature rise-time curves, Crystal structures and defects, ceramic materials,
		insulating materials, magnetic materials, Philosophy of computer aided design,
		advantages and limitations.
- ') 1 bi	3.	To Extend the ferrites, Ferro-magnetic materials and components; Basics of Nano
7 1 18		materials and Superconductors, Computer aided design approaches analysis,
		synthesis and hybrid methods.
7	4.	To Illustrate the Methods of cooling ventilation (induced & forced, radial & axial),
		direct cooling & quantity of cooling medium, Concept of optimization and its
		general procedure.
	5.	To Apply the Calculation of total mmf and magnetizing current. Specific permeance
		and leakage reactance, Output equations of rotating machines, specific electric and
		magnetic loadings, factors affecting size of rotating machines, separation of main
		dimensions, selection of frame size, Rotor design of three phase induction motors.
		Design of field system of DC machine and synchronous machines, Flow charts for
		the design of transformer, dc machine, three-phase induction and synchronous
		machines.
	(
	6.	To Analyze the Computation of no-load current to voltage regulation, efficiency and
		cooling system designs, Core and armature design of dc and 3-phase AC machines,
		Estimation of performance from design data.

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	A.K. Sawhney, A Course in Electrical Machine Design, Dhanpat Rai & Sons.	2016
2.	M.G. Say, The Performance and Design of AC Machines, Pitman & Sons.	2008
	S.K. Sen, Principle of Electrical Machine Design with Computer Programming, Oxford and IBM Publications.	2014

Course Code: BET-C 613

Course Name: Microprocessors and Interfacing

MM: 100	Sessional: 30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Digital Electronics, Basic Computer Organization, and Assembly Programming concepts.
Objectives:	 To introduce the architecture, organization, and functioning of microprocessors. To develop skills in low-level assembly programming and debugging. To understand memory interfacing, peripheral interfacing, and bus structures. To provide knowledge of interrupt handling, DMA, and interfacing devices. To prepare students for embedded systems, robotics, and real-time application development.
Course	Dr. Ashish Nainwal
Coordinator	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
40	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
10	type questions of ten (10) marks each and student shall be required to attempt any four
- 0	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Introduction to Microprocessors	Evolution of microprocessors, comparison of 8-bit, 16-bit, and 32-bit processors, Microprocessor organization: ALU, CU, registers, buses, and flags, Overview of 8085 architecture and pin configuration, Instruction cycle, machine cycle, and timing diagrams, Addressing modes and data transfer mechanisms	08	PO1/PO6	PSO1
UNIT-2	Module-II Programming with 8085/8086	Instruction set classification: data transfer, arithmetic, logical, branching, control, Assembly language programming basics, Programs for arithmetic operations, code conversion, and counters, Overview of 8086 architecture and instruction set, Debugging and simulation tools for assembly programming	08	PO1/PO2/PO 4	PSO2
UNIT-3	Module-III Memory and I/O Interfacing	Memory classification and hierarchy, Interfacing RAM and ROM with microprocessors, I/O mapped I/O and memory-mapped I/O concepts, Bus structure: data bus, address bus, and control bus, Interfacing with 8255 (Programmable Peripheral Interface)	08	PO2/PO4/PO 10	PSO1/PS O3
UNIT-4	Module-IV Interrupts and DMA	Interrupt structure of 8085 and 8086, Types of interrupts: hardware, software, vectored, non-	08	PO2/PO4/PO 6/PO10	PSO2/PS O3

		vectored, Interrupt handling and			
		service routines, Direct Memory			
		Access (DMA) and controller			
		8257, Applications of interrupts			
		and DMA in real-time systems			
UNIT-5	Module-V	Interfacing with 8253	08	PO6/PO7/PO	PSO1/PS
	Interfacing	(Programmable Interval Timer)		8/PO12	03
	Devices and	and 8259 (Interrupt Controller),		0,1 0 12	03
		Interfacing ADC/DAC with			
	Applications	microprocessor, Serial			
		communication interface (USART			
		8251), Case studies:			
		microprocessor-based data			
		acquisition systems, motor control,			
		and instrumentation, Emerging			
		trends: microcontrollers vs	2		
		microprocessors in embedded	9/		
		applications	110		
Total No. of	Hours		40		

/(0		
Course Outcomes:	1.	Explain the architecture, instruction set, and functioning of 8085 and 8086
		microprocessors.
	2.	Write and execute assembly language programs for arithmetic, logical, and control
10		operations.
	3.	Interface memory and I/O devices with microprocessors.
e)//	4.	Analyze interrupt structures and DMA mechanisms for efficient data handling.
	5.	Apply microprocessor interfacing techniques for real-world applications in
	7 /	embedded systems.
I CO JA	// -	H. H.

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.9	Ramesh Gaonkar, Microprocessor Architecture, Programming, and Applications with the 8085, Penram International	2013
2.	Douglas V. Hall, Microprocessors and Interfacing, McGraw-Hill	<mark>20</mark> 17
3.	A.K. Ray & K.M. Bhurchandi, Advanced Microprocessors and Peripherals, McGraw-Hill	2014
4.	Kenneth Ayala, The 8086 Microprocessor: Programming and Interfacing, Delmar	2007
5.	Brey Barry, Intel Microprocessors: Architecture, Programming, and Interfacing, Pearson	2017

Course Code: BEE-C 614

Course Name: Generation of Electrical Energy

MM: 100	Sessional: 30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Basic Electrical Engineering, Power Systems, Electrical Machines.
By the end of this section, you will be able to:
1. To impart knowledge of conventional and non-conventional methods of electrical power generation.
2. To enable students to analyze the working principles, layout, and operation of different power plants.
3. To understand economic, environmental, and technical aspects of power generation.
4. To provide insight into modern technologies like renewable energy integration and smart generation.
 To prepare students for industry practices, research, and higher studies in the field of energy and power systems.
Mr. Yogesh Kumar

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
12 4	contain of ten(10) short answer type questions of six (06) mark each and student shall be
· - 1	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
(0)	type questions of ten (10) marks each and student shall be required to attempt any four
77	questions. Questions shall be uniformly distributed from the entire syllabus.

* 12 17 m	H				700
UNIT	Module	Course Content	No. of	POs	PSOs
			Hours	mapped	mapped
UNIT-1	Module-I	Energy resources and their	08	PO1/PO6/P	PSO1
	Introduction	classification, Indian and world		07	
	to Power	energy scenario, Conventional vs non-			
		conventional energy sources,			
	Generation	Overview of power generation	1		
	Yall	methods, Role of power sector in	100		
		national development		7	
UNIT-2	Module-II	Thermal Power Plants: layout,	08	PO1/PO2/P	PSO1/PS
	Conventional	working principle, major equipment		O4/PO6	O2
	Power Plants	(boiler, turbine, condenser, generator)		0 1/1 00	02
	rower Flains	Hydro Power Plants: site selection,			
		classification, layout, pumped storage			
		Nuclear Power Plants: nuclear			
		fission, reactor types, safety measures			
		Comparative analysis of thermal,			
		hydro, and nuclear plants			
UNIT-3	Module-III	Solar energy: PV systems, solar	08	PO6/PO7/P	PSO2/PS
	Non-	thermal power plants		O8/PO12	03
	Conventional	Wind energy: site selection, wind			
		turbines, grid integration			
	and	Biomass, geothermal, tidal, and fuel			
	Renewable	cell power generation			
	Energy	Small hydro and hybrid energy			
	Sources	systems			
		Challenges in renewable energy			
		integration			

I D HTD 4	3.6 1.1 13.7	I and assess land disection assess mlant	0.0	DO2/DO4/D	DCC1/DC
UNIT-4	Module-IV	Load curve, load duration curve, plant	08	PO2/PO4/P	PSO1/PS
	Economics	load factor, capacity factor, Cost of		O6/PO11	O3
	of Power	generation: fixed and variable cost,			
		depreciation, Tariff methods: flat rate,			
	Generation	block rate, two-part tariff, Economic			
		load dispatch and unit commitment			
		(introductory concepts),			
		Environmental and policy aspects in			
		energy generation			
UNIT-5	Module-V	Distributed generation and microgrids,	08	PO2/PO6/P	PSO2/PS
	Modern	Smart grid integration of renewable		O7/PO12	O3
	Trends in	energy, Cogeneration and combined			- 0
		cycle power plants, Energy storage			
	Power	systems in power generation, Future			
	Generation	of energy: hydrogen economy, green			
		energy initiatives			
Total No. of Hours		40			

Course Outcomes:		Explain various energy resources and their role in power generation.
Rio	2.	Demonstrate knowledge of working principles, layouts, and equipment of
人子		conventional power plants.
	3.	Evaluate the feasibility and challenges of renewable energy-based power generation.
	4.	Analyze economics, load forecasting, and tariff structures in power generation
10		systems.
	5.	Apply knowledge of modern technologies like distributed generation, cogeneration,
g //	P	and smart grids for sustainable energy solutions.
		RC A A A

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	B.R. Gupta, Generation of Electrical Energy, S. Chand	2018
2.	M.M. El- Wakil, Power Plant Technology, McGraw-Hill	2016
3.	P.K. Nag, Power Plant Engineering, Tata McGraw-Hill	2017
4.	S.N. Singh, Electric Power Generation, Transmission, and Distribution, PHI	2014
5.	G.D. Rai, Non-Conventional Energy Sources, Khanna Publishers	2011
6.	IEEE/IEC Standards on Renewable Energy and Power Generation	Latest

Course Code: BEE-P 615 Course Name: Digital Control System

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Control System, Mathematics, Signal & Systems	
Objectives:	Discrete Representation of Continuous Systems	
	2. Discrete System Analysis	
	3. Stability of Discrete Time System	
	4. State Space Approach for discrete time systems	
	5. Design of Digital Control System	
Course	Mr. Yogesh Kumar	
Coordinator		

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
/4	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
\wedge	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of	POs	PSOs
ONII	Wioduic	Course Content	Hours	mapped	mapped
UNIT-1	Module-I Discrete Representation of Continuous Systems	Basics of Digital Control Systems. Discrete representation of continuous systems. Sample and hold circuit. Mathematical Modeling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.	08	PO1/ PO6/PO7/P O8/PO10/P O12	PSO1
UNIT-2	Module-II Discrete System Analysis	Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solution of Discrete time systems. Time response of discrete time system.	08	PO1/ PO2/PO3/P O4/PO6/P O7/PO8/P O10/PO12	PSO1
UNIT-3	Module-III Stability of Discrete Time System	Stability analysis by Jury test. Stability analysis using bilinear transformation. Design of digital control system with dead beat response. Practical issues with dead beat response design.		PO1/ PO2/PO3/P O4/PO6/P O7/PO8/P O10/PO12	PSO1/PS O3
UNIT-4	Module-IV State Space Approach for discrete time systems	State space models of discrete systems, State space analysis. Lyapunov Stability. Controllability, reach-ability, Re-constructability and observability analysis. Effect of pole zero cancellation on the controllability & observability.	08	PO1/ PO2/PO3/P O4/PO6/P O7/PO8/P O10/PO12	PSO1/ PSO3
UNIT-5	Module-V Design of	Design of Discrete PID Controller, Design of discrete state feedback	08	PO1/ PO2/PO3/P	PSO1/ PSO3

	Digital Control	controller. Design of set point tracker. Design of Discrete Observer for LTI		O4/PO6/P O7/PO8/P	
	System	System. Design of Discrete compensator.		O10/PO12	
Total No. of Hours		40			

Course Outcomes:	1.	Explain the Basics of Digital Control Systems, Discrete representation of continuous
Course Outcomes.	1.	systems, Sample and hold circuit.
	2	• • •
	۷.	Extend the Stability analysis by Jury test. Stability analysis using bilinear transformation.
	3.	Illustrate the Mathematical Modelling of sample and hold circuit. Effects of
		Sampling and Quantization. Choice of sampling frequency. ZOH equivalent. Z-
		Transform and Inverse Z Transform for analyzing discrete time systems. Pulse
		Transfer function. Pulse transfer function of closed loop systems.
	4.	Apply the Mapping from s-plane to z plane, Time response of discrete time system.
		To solve the discrete time systems, State space models of discrete systems, State
		space analysis, Lyapunov Stability. Controllability, reach-ability, Reconstructibility
		and observability analysis. Effect of pole zero cancellation on the controllability &
/5:		observability.
/48	6.	To analyze Design of digital control system with dead beat response. Practical
		issues with dead beat response design. Design of Discrete PID Controller, Design of
40		discrete state feedback controller. Design of set point tracker. Design of Discrete
10		Observer for LTI System. Design of Discrete compensator.
		(0)
Suggested books:	5	(A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	K. Ogata, "Digital Control Engineering", Prentice Hall, Englewood Cliffs.	1995
2.	M. Gopal, "Digital Control Engineering", Wiley Eastern.	1988
3.	G.F. Franklin, J.D. Powell and M.L. Workman, "Digital Control of Dynamic Systems", Addison- Wesley.	1998
4.	B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston.	1 <mark>9</mark> 80

क्षेत्रपाना १९५७ विकासिक

Course Code: BEE-P 616

Course Name: Fundamentals of Drone Technology

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Basics of Electrical Engineering, Control Systems, Electronics, and Communication Systems.
Objectives:	 To provide foundational knowledge of Unmanned Aerial Vehicles (UAVs) and their applications. To develop understanding of drone subsystems such as propulsion, sensors, power supply, and communication. To familiarize students with navigation, control, and flight dynamics of drones. To introduce drone regulations, airworthiness, and safety practices. To prepare students for industry readiness in drone design, operation, and integration with emerging technologies like AI and IoT.
Course Coordinator	Dr. Brijesh Kumar

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
- 0	contain of ten(10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
15	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Introduction to Drone Technology	History and evolution of UAVs, Classification of drones (fixed-wing, rotary-wing, hybrid), Drone architecture and major components, Basic principles of flight: lift, thrust, drag, weight, Overview of applications: agriculture, surveillance, delivery, mapping	08	PO1/PO6/P O7	PSO1
UNIT-2	Module-II Drone Components and Propulsion Systems	Drone frames, motors, propellers, and ESCs, Power systems: batteries, fuel cells, hybrid sources, Payload systems: cameras, sprayers, delivery modules, Communication systems: RF, GPS, telemetry, Introduction to ground control stations	08	PO1/PO2/P O4	PSO2
UNIT-3	Module-III Navigation, Control and Sensors	Drone kinematics and dynamics, Flight control systems: open loop, closed loop, PID controllers, Sensors: gyroscope, accelerometer, magnetometer, barometer, GPS, Obstacle detection: ultrasonic, LiDAR, and vision-based sensors, Autonomous navigation and waypoint planning	08	PO2/PO4/P O10/PO12	PSO1/PS O3
UNIT-4	Module-IV Regulations, Safety and Maintenance	Drone regulations: DGCA (India), FAA (USA), ICAO guidelines, UAV classifications by weight and permissible operations, Airworthiness, certification, and licensing	08	PO6/PO7/P O8/PO11	PSO2/PS O3

UNIT-5	Module-V Emerging Trends and Applications	requirements, Safety protocols and risk assessment, Maintenance, troubleshooting, and reliability improvement Drones in agriculture, healthcare, disaster management, and defense, Drone swarms and cooperative missions, Integration with IoT, AI, and Big Data, Future of drone technology: urban air mobility, passenger drones, Ethical and social implications of drone deployment	08	PO6/PO7/P O8/PO12	PSO1/PS O3
Total No. of	Hours	implications of drone deployment	40		

Course Outcomes:	1. Explain the fundamental principles, types, and applications of drones.
	2. Identify and analyze various drone subsystems such as propulsion, sensors, and
	communication.
	3. Apply concepts of flight dynamics and control systems to drone operation.
	4. Interpret regulatory frameworks, safety requirements, and maintenance practices for
R_{i}	UAVs.
7.3	5. Evaluate emerging technologies and applications of drones for sustainable and
	innovative solutions.
	7441 49/2

S. No.	Name of Authors /Books /Publisher				
4.	Tiwari & Garg, Fundamentals of Drone Technology, BPB Publications	2020			
2.	Austin, Unmanned Ai <mark>rcraft Systems: UAVS Design, Development and Deployment, Wiley</mark>	2010			
3.	R.E. Fahlstrom, Introduction to UAV Systems, Wiley	2012			
4.	DGCA India, Civil Aviation Requirements (CAR) for RPAS	Latest			
5.	Kilian & Hajek, Small Unmanned Aircraft: Theory and Practice, AIAA	<mark>20</mark> 14			
6.	B. Siciliano & O. Khatib, Springer Handbook of Robotics	2016			

Course Code: BEE-O 617

Course Name: Fundamentals of AI

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Basic knowledge of Mathematics, Algorithms, Data Structures, and Programming.				
Objectives:	 To introduce students to the foundations and history of Artificial Intelligence. To develop problem-solving abilities using search strategies and knowledge representation. To provide understanding of reasoning, inference, and learning techniques. To expose students to AI applications in engineering, industry, and daily life. To prepare students for advanced studies, research, and careers in intelligent systems and data-driven technologies. 				
Course	Dr. Brijesh Kumar				
Coordinator					

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
40	contain of ten (10) short answer type questions of six (06) mark each and student shall be
10	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of	POs	PSOs
001			Hours	mapped	mapped
UNIT-1	Module-I Introduction to AI	Definition, history, and evolution of AI, Foundations and scope of AI, AI applications in engineering, business, healthcare, robotics, and daily life, AI vs Human Intelligence, Future of AI and ethical considerations	08	PO1/PO6/P O7	PSO1
UNIT-2	Module-II Problem Solving and Search Techniques	Problem formulation and state space representation, Search strategies: uninformed (BFS, DFS) and informed (A*, Best-first), Heuristic search and optimization, Constraint satisfaction problems (CSPs), Applications of search techniques in real-world problems	08	PO1/PO2/P O4	PSO2
UNIT-3	Module-III Knowledge Representation and Reasoning	Propositional and predicate logic, Semantic networks and frames, Rule- based systems and production systems, Forward and backward reasoning, Uncertainty handling: probability, Bayes theorem, fuzzy logic (overview)	08	PO2/PO4/P O10	PSO1/PS O3
UNIT-4	Module-IV Learning in AI	Introduction to Machine Learning, Supervised, unsupervised, and reinforcement learning (overview), Decision trees and neural networks (basics), Expert systems and case- based reasoning, Applications of ML in classification, prediction, and control systems	08	PO2/PO4/P O6/PO10	PSO2/PS O3
UNIT-5	Module-V Applications	AI in natural language processing, speech, and vision, AI in robotics and	08	PO6/PO7/P O8/PO12	PSO1/PS O3

				H.
	and Emerging Trends in AI	autonomous systems, Smart systems: IoT + AI (AIoT), AI ethics, bias, and societal impact, Emerging trends: deep learning, generative AI, explainable AI (XAI)		
Total No. of	Hours		40	

Course Outcomes:	1. Explain the foundations, scope, and applications of Artificial Intelligence.
	2. Apply search techniques and problem-solving methods in AI.
	3. Represent knowledge using logical and rule-based systems, and perform reasoning.
	4. Demonstrate the use of learning methods such as supervised and unsupervised
	learning.
	5. Analyze real-world applications of AI and evaluate ethical and societal implications

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson	2021
2.	Elaine Rich & Kevin Knight, Artificial Intelligence, McGraw-Hill	2017
3.	Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems, PHI	2009
4.	Nils J. Nilsson, Principles of Artificial Intelligence, Springer	2014
5.	Deepak Khemani, Artificial Intelligence, McGraw-Hill Education	2013

Course Code: BEE-O 618 Course Name: Soft Computing

MM: 100	Sessional:30
Time: 3 Hr.	ESE:70
L T P	Credit :3
3 0 0	

Prerequisites:	Basic knowledge of Mathematics, Algorithms, and Fundamentals of Artificial Intelligence.			
Objectives:	To introduce students to the fundamental concepts and techniques of soft computing.			
	To develop understanding of fuzzy systems, fuzzy logic, and their real-world applications.			
	3. To train students in applying evolutionary computation, neural networks, and hybrid approaches for problem-solving.			
	 To foster analytical and programming skills for designing soft computing-based solutions. 			
	 To prepare students for advanced studies, research, and industrial applications in intelligent systems and decision-making. 			
Course	Mr. Aviral Awasthi			
Coordinator	THE TYPICAL TO WOOD IT			

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-I Introduction to Soft Computing	Definition, scope, and importance of soft computing, Difference between hard computing and soft computing, Applications in engineering and real-world problems, Overview of soft computing techniques: Neural Networks & Genetic Algorithms.	08	PO1/PO6/P O7	PSO1
UNIT-2	Module-II Fuzzy Sets and Fuzzy Logic	Fuzzy Logic, Crisp sets vs fuzzy sets, Fuzzy set operations and properties, Membership functions and fuzzification, Fuzzy rules, fuzzy reasoning, and fuzzy inference systems, Defuzzification Methods	08	PO1/PO2/P O4	PSO2
UNIT-3	Module-III Neural Networks	Biological inspiration and artificial neural network, Basic models: Perceptron, Multilayer Perceptron (MLP), Back propagation algorithm, Supervised and Unsupervised learning.	08	PO2/PO4/P O10	PSO1/PS O3
UNIT-4	Module-IV Genetic Algorithms and Optimization	Introduction to evolutionary computation, Genetic operators: selection, crossover, mutation, Fitness function and population evolution, Applications of GA in optimization and search problems, Hybrid approaches: Neuro-fuzzy and GA-fuzzy systems	08	PO2/PO4/P O6/PO10	PSO2/PS O3

UNIT-5	Module-V Applications of Soft Computing	Fuzzy logic controllers in engineering systems, Soft computing in power systems, robotics, and control, Decision support systems using fuzzy and neural networks, Kohnen's selforganizing network and Hopfield network	08	PO6/PO7/P O8/PO12	PSO1/PS O3
Total No. of	Hours		40		

Course Outcomes:	1. Explain the concepts, techniques, and importance of soft computing.
	2. Apply fuzzy logic and fuzzy set theory to develop intelligent systems.
	3. Implement basic neural network models for problem-solving.
	4. Utilize genetic algorithms for optimization in engineering and real-world
	applications.
	5. Integrate fuzzy, neural, and evolutionary techniques to solve complex problems in
	control, decision-making, and data analysis.

S. No.	Name of Authors /Books /Publisher	Year of Publication
	S. Rajasekaran & G.A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI	2017
2.	Timothy J. Ross, Fuzzy Logic with Engineering Applications, Wiley	2016
3.	Simon Haykin, Neural Networks and Learning Machines, Pearson	2010
4.	D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley	1989
5.	Jang, Sun, & Mizutani, Neuro-Fuzzy and Soft Computing, Pearson	1997
6.	Karray & Silva, Soft Computing and Intelligent Systems Design, Addison Wesley	2004

POWER SYSTEM-II LABORATORY BEE-C 661

MM: 50
Time: 2 Hr
ESE: 35
L T P
Credit: 1

LIST OF EXPERIMENTS

Note: Experiments on software platforms preferably on PSCAD/MATLAB/Sci lab or any software.

- 1. To locate the faulted point on the cable using cable fault locator.
- 2. To study single line to ground fault as practical application in transmissions lines.
- 3. To study three phase fault as practical application in transmission lines.
- 4. To develop a computer program for Y-bus.
- 5. To develop a computer program for Z-bus.
- 6. To develop a computer program for Gauss-Seidel method.
- 7. To develop a computer program for Newton-Raphson method.
- 8. To develop a computer program to analyze L-G faults.
- 9. To develop a program for L-L fault in the power transmission line.
- 10. To develop a program for L-L-L fault in the power transmission line.

Note: Below experiments are to be performed using Virtual Labs (An initiative of the Ministry of Education, Government of India). (5 Experiments are Compulsory)

- 1. To study the Synchronization of alternator with infinite bus bar.
- 2. To determine the direct axis reactance (X_d) and quadrature axis reactance (X_q) of synchronous machine.
- 3. To determine positive sequence, negative sequence and zero sequence reactances of an alternator.
- 4. To measure the dielectric Strength of transformer oil.
- 5. To Study the effect of different shape of electrodes on dielectric (air) breakdown.
- 6. To Study the gas actuated Buchholz relay for oil filled transformer.
- 7. To Study the over-current relay and the effect of PSM and TSM.
- 8. To determine the sub-transient (x_d'') , transient (x_d'') and steady state reactance (x_d) of a synchronous machine.
- 9. To Study the Ferranti Effect of a transmission line/cable.
- 10. To study the differential Protection of a three phase delta-delta connected transformer.
- 11. To study the Protection of a three phase Induction Motor using Numerical Relay.

COMPUTER AIDED DESIGN OF ELECTRICAL MACHINES LABORATORY **BEE-C 662**

MM: 50 Sessional: 15 Time: 2 Hr ESE: 35 LTP **Credit:** 1 002

LIST OF EXPERIMENTS

- To develop a computer program to design single phase core type transformer.
- To develop a computer program to design single phase shell type transformer.
- To develop a computer program to design three phase core type transformer.
- To develop a computer program to design three phase shell type transformer.
- 5. To develop a computer program to design three phase squirrel cage Induction motor.
 6. To develop a computer program to design three phase slip ring Induction motor.
- 7. To develop a computer program to design a D. C. series motor.
- To develop a computer program to design a synchronous machine.

 To develop a computer program to design a DC shunt motor.
- 10. To develop a computer program to design a DC generator.

Note: 5 Experiments are Compulsory to be performed using Virtual Labs (An initiative of the Ministry of Education, Government of India).

MICROPROCESSORS AND INTERFACING LABORATORY BET-C 666

MM: 50
Time: 2 Hr
L T P
0 0 2

Sessional: 15
ESE: 35
Credit: 1

LIST OF EXPERIMENTS

- 1. Study of 8085/8086 microprocessor trainer kit and its instruction set.
- 2. Write and execute ALP for basic arithmetic operations (add, sub, mul, div).
- 3. Perform code conversion: BCD \leftrightarrow Binary, Hex \leftrightarrow Decimal using ALP.
- 4. Implement sorting (asc/desc) and searching in an array using ALP.
- 5. Write ALP for string manipulation: reverse, count, and palindrome check.
- 6. Interface 8255 PPI to control LEDs, seven-segment display, and switches.
- 7. Interface ADC/DAC with microprocessor for A/D and D/A conversion.
- 8. Interface and control a stepper motor for direction and speed using microprocessor.
- 9. Interface 8253/8254 PIT to generate time delays and square waveforms.
- 10. Interface 8259 PIC to demonstrate interrupt handling with microprocessor.

