

CHOICE BASED CREDIT SYSTEM EVALUATION SCHEME AND COURSE OF STUDY ACCORDING TO AICTE MODEL CURRICULUM

IN

B.TECH – II YEAR ELECTRICAL ENGINEERING APPROVED BY BOARD OF SYLLABUS JULY 2024

(w.e.f. Batch 2023 and onwards)

FACULTY OF ENGINEERING AND TECHNOLOGY GURUKUL KANGRI (DEEMED TO BE UNIVERSITY) HARIDWAR-249404

Website: https://www.gkv.ac.in/departments/ee/

(Effective from the academic session 2024-25)

GURUKULA KANGRI VISHWAVIDYALAYA, HARIDWAR

Faculty of Engineering & Technology Electrical Engineering B. Tech. Second Year

Syllabus in accordance with AICTE Model Curriculum

SEMESTER-III

S. No	COURSE CODE	COURSE TITALE	PE	ERIODS EVALUATION SCHEME			ECE	SUBJECT TOTAL			
110	CODE					SESSION	NAL E	ESE			
				THE	ORY					•	
			L	T	P	CREDIT	CT	TA	TOTAL		
1	BEM-C302	Engineering Mathematics-III	3	1	0	4	20	10	30	70	100
2	BEE-C 305	Electrical Machine-I	3	0	0	3	20	10	30	70	100
3	BEE-C 308	Electrical Circuit Analysis	3	0	0	3	20	10	30	70	100
4	BEE-C 309	Electromagnetic Field Theory	3	0	0	3	20	10	30	70	100
5	BET-C 307	Analog Circuit		0	0	3	20	10	30	70	100
6		MOOCS-1				3					
			Pl	RAC'	TICA	L			•		
7	BEE-C 351	Electrical Machine-I Lab	0	0	2	1	10	05	15	35	50
8	BEE-C 352	Electrical Circuit Analysis and Simulation Lab	0	0	2	1	10	05	15	35	50
9	BEE-C 353	Seminar Based on New Technologies		0	2	1	10	05	15	35	50
10	BET-C 351	Analog Circuit Lab	0	0	2	1	10	05	15	35	50
		TOTAL	15	1	4	23	140	70	210	490	700

List of MOOC courses shall be decided by the departmental committee in each semester depending upon the list from SWAYAM/NPTEL and other recognized online platforms. Students have to study from Online Platform doubt sessions shall be held by internal teachers. Student has to give exam S WAYAM/NPTEL Platform for certification and credit transfer. SWAYAM courses to run every year from July onwards (Odd Semester) are declared in the month of May and for courses to run every year from January onwards (Even Semester) are declared in the month of December. For more detail, please visit https://nptel.ac.in/courses and https://swayam.gov.in/. The duration of the course must be 12 weeks.

Notice: The SWAYAM course coordinator will ensure that the students are informed about MOOCs courses well before time. So that students get registered in the course decided by the departmental committee.

L	Lecture	T	Tutorial	C	Discipline Specific Course
CT	Cumulative Test	TA	Teacher Assessment	ESE	End Semester Examination
BEE	Electrical Code	BET	Electronics Code	BEM	Mathematics Code

Effective from the academic session 2024-25

GURUKULA KANGRI VISHWAVIDYALAYA, HARIDWAR

Faculty of Engineering & Technology
Electrical Engineering
B. Tech. Second Year

Syllabus in accordance with AICTE Model Curriculum

SEMESTER-IV

s. COURSE		COURSE TITALE	PERIODS		EVALUATION SCHEME					SUBJECT	
No	CODE			SESSIONAL EVALUATION				ESE	TOTAL		
	1			THE	ORY					l I	
			L	T	P	CREDIT	CT	TA	TOTAL		
1	BEE-C 410	Electrical Machine-II	3	0	0	3	20	10	30	70	100
2	BEE-C 411	Power Electronics	3	0	0	3	20	10	30	70	100
3	BEE-C 412	Electrical Measurement and Measuring Instrument	3	0	0	3	20	10	30	70	100
4	BEE-C 413	Signal and System	3	0	0	3	20	10	30	70	100
5	BET-C 414	Digital System Design	3	0	0	3	20	10	30	70	100
6	BKT-A 403	Indian Knowledge Tradition	2	0	0	0	0 20 10 30		30	70	100
7		MOOCS-II				3					
			Pl	RAC'	TICA	L			•	•	•
8	BEE-C 461	Electrical Machine-II Lab	0	0	2	1	10	05	15	35	50
9	BEE-C 462	Power Electronics Lab	0	0	2	1	10	05	15	35	50
10	BEE-C 463	Electrical Measurement and Measuring Instrument Lab	0	0	2	1	10	05	15	35	50
11	BET-C 464	Digital System Design Lab	0	0	2	1	10	05	15	35	50
	TOTAL				8	22	160	80	240	560	800

Note: Summer Training and Internship Program-I / Mini Project (3-4 Weeks), To be pursued during summer vacation, submit a certificate of completion in the department (in summer break after IV semester exam and will be assessed during V semester)

Note:

- 1) The students have to undergo an industrial training/mini project/internship program during summer vacation (June –July) after IV semester examination. The report and certificate of completion of training program has to be submitted in the department, which will be evaluated in V semester. Also the students have to present PPT of the industrial training/mini project/internship.
- 2) List of MOOC courses shall be decided by the departmental committee in each semester depending upon the list from SWAYAM/NPTEL and other recognized online platforms. Students have to study from Online Platform doubt sessions shall be held by internal teachers. Student has to give exam SWAYAM/NPTEL Platform for certification and credit transfer. SWAYAM courses to run every year from July onwards (Odd Semester) are declared in the month of May and for courses to run every year from January onwards (Even Semester) are declared in the month of December. For more detail please visit https://nptel.ac.in/courses and https://swayam.gov.in/. The duration of the course must be 12 weeks.

Notice: The SWAYAM course coordinator will ensure that the students are informed about MOOCs courses well before time. So that students get registered in the course decided by the departmental committee.

L	Lecture	T	Tutorial	C	Discipline Specific Course
CT	Cumulative Test	TA	Teacher	ESE	End Semester Examination
			Assessment		
BEE	Electrical Code	BET	Electronics Code	A	Ability Enhancement Compulsory Course

Course Code: BEM- C302

Course Name: Engineering Mathematics-III

MM: 100

Time: 3 Hr. L T P

3 1 Sessional examination: 30

End Semester Examination: 70

Credit: 4

Prerequisites: Engineering Mathematics I. Engineering Mathematics II

Objectives: This course provides an introduction to the basic concepts and techniques

of:

1. Laplace transform and its application to the solution of ordinary differential equations.

- 2. Fourier transform and its application to solve partial differential equations.
- 3. Z transform of elementary sequences both from the definition and by using tables and use the appropriate theorems to calculate Z transforms and inverse Z transforms.
- 4. Basic theory of function of a complex variableand theory of contour integration using residue calculus.
- 5. Errors and numerical solution of algebraic and transcendental equations.

Course	Dr Lokesh Kumar Joshi
Coordinator Course	Dr. Lokesh Kumar Joshil, Dr Vivek Goel
Faculty Lectures	40 Hours

The question paper shall consist of two sections (Section-A and Section-B). Section-A shall containten (10) short answer type questions of six (06) NOTE: mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hou rs	POs mapped
UNIT-I	Module-1	Laplace Transform: Definition, Laplace transform of elementary functions, Shifting theorems, Transform of derivatives, Differentiation and Integration of transforms,	04	PO1/PO2/PO 3/PO4/PO5/P O6/PO7,PO0 9, PO11/PO12

(OP Chamile)

Module-2 Heaviside unit step and Dirac Delta functions, Convolution of		
	02	
equations used in Mechanics, Electric circuits and Bending of beams	02	1
transform, Fourier sine and cosine transforms, Fourier integral formula, Parsevel's identity	06	PO1/PO2/PO 3/PO4/PO5/P O6/PO7.PO0 9.
Applications of Fourier transform in solving heat equations.	02	PO11/PO12
UNIT-3 Module-5 Z Transform: Definition, Linearity property, Z transform of elementary functions, Shifting theorems, Initial and final value theorem, Convolution theorem,	04	PO1/PO2/PO 3/PO4/PO5/P O6/PO7,PO0 9, PO11/PO12
Module-6 Inversion of Z transforms, Solution of difference equations by Z transforms.	03	
UNIT-4 Module-7 Function of Complex Variable: Definition, Limit and Continuity of functions of Complex Variables: Analytic Functions, Harmonic Conjugate, Cauchy-Riemann Equations (without proof), Line Integral, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof).	05	PO1/PO2/PO 3/PO4/PO5/P O6/PO7,PO0 9, PO11/PO12
Module-8 Singular Points, Poles & Residues, Residue Theorem, Application of Residues theorem for Evaluation of Real Integral (UnitCircle).	04	
UNIT-5 Module-9 Errors and Roots of equations: Absolute, relative, round-off and truncation errors. Significant digits. Algebraic and Transcendental Equations. Numerical solution, Method of bisection, Newton-Raphson method, Direct iterative method, convergence.	08	PO1/PO2/PO 3/PO4/PO5/P O6/PO7,PO0 9, PO11/PO12
Total No. of Hours	40	

Course Outcome:

On completion of this course, the students will be able to

1. apply Laplace transform in various engineering problems and solve the differential equations arising in mechanics and electrical circuits(L2, L3, L5, L6)

2 understand the concept of Fourier transform and use it to solve partial differential equations having initial and boundary values(L1, L2, L3, L4).

3. apply Z transform to convert discrete-time signals to the Z-domain, analyze system behavior, and use these techniques in digital signal processing and control systems. (L1, L2, L3, L4).

4.learn the functions of complex variables and apply it to solve the

(BP Chamola)

problems of complex differentiation and integration(1.1, 1.2, 1.3, 1.5). 5. solve algebraic and transcendental equations by applying iterative methods and analyze their convergence.(1.2,1.3, 1.4.1.5)

Suggested books:

S. No.	Name of Authors /Books /Publisher	Year of Publication
۱, ع	Kreyszig E., Advanced Engineering Mathematics 10 edition, Wiley India Pvt. Ltd. ISBN- 9788126554232	2015
2.	Cerald, C.F., Wheatley P.O., Applied Numerical Analysis, Pearson, 2007. ISBN-ISBN-10-032119019x	2007
3,	Grewal B.S., Higher Engineering Mathematics, Khanna, New Delhi, ISBN-9788174091956	2000
4.	Jain R. K., Iyenger S.R.K., Jain M.K., Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, ISBN-812242001X	2010

L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze, L5 - Evaluate, L6 - Create

- Attendance required: 75 %
- End semester exam: 70 marks (complete syllabus)
- Sessional Exam: 20 marks
- Assignment/seminar/tutorial: 10 marks(Each student in small groups will apply these concepts to solve practical problems)

Course Code: BEE-C305

Course Name: ELECTRICAL MACHINE-I

MM: 100	Sessional: 30
Time: 4 Hr.	ESE: 70
LTP	Credit: 0
3 0 0	

Prerequisites:	Basic Electrical Engineering, Basics of Physics and Mathematics
Objectives:	1: To introduce the Principles of Electro-Mechanical Energy Conversion.
,	2: To understand the basic concepts of the electrical machines working in the modern power system.
	3: To understand and analyze the functioning of various types of electrical machines like transformer, generators and motors etc.
Course	Mr. Yogesh Kumar
Coordinator	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B).
	Section-A shall contain of ten (10) short answer type questions of six (06)
	mark each and student shall be required to attempt any five (05) questions.
	Section-B shall contain eight (08) long answer type questions of ten (10)
	marks each and student shall be required to attempt any four questions.
	Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-1	Principles of Electro- Mechanical Energy Conversion: Introduction, Flow of Energy in Electromechanical Devices, Energy in magnetic systems (defining energy & Co- energy), Singly Excited Systems; determination of mechanical force, mechanical energy, torque equation, Doubly excited Systems; Energy stored in magnetic field, electromagnetic torque, Generated EMF in machines; torque in machines with cylindrical airgap.	08	PO1/PO2/PO6/PO 7/PO8/PO10/PO12	PSO1
UNIT-2	Module-2	D.C. Machines- Generators: Construction of DC Machines, Armature	08	PO1/PO2/PO6/PO 7/PO8/PO10/PO12	PSO1/PSO2/PSO 3

		winding, EMF and torque equation, Armature Reaction, Commutation, Interpoles and Compensating Windings, Performance Characteristics of D.C. generators, losses and efficiency.			
UNIT-3	Module-3	D.C. Machines- Motors: Performance Characteristics of D.C. motors, Starting of D.C. motors; Concept of starting (3 point and 4 point starters), Speed control of D.C. motors; Field Control, armature control and Voltage Control (Ward Lenonard method) Efficiency and Testing of D.C. machines (Hopkinson's and Swinburn's Test).	09	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/PSO 3
UNIT-4	Module-4	Transformer: Review of Single-phase transformer, Three phase transformer Construction, Three-phase unit transformer and Bank of three single phase transformers with their advantages, Three-phase transformer Groups (Phasor groups) and their connections, Y-Δ connection, Open delta connection, Three-phase/ 2 - phase Scott connection and its application.	07	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/PSO 3
UNIT-5	Module-5	Transformer: All day efficiency, Sumpner's test, polarity test Excitation Phenomenon in Transformers, Harmonics in Single phase and 3-phase	08	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/PSO 3

	transformers, Parallel operation and load sharing of Single phase and three phase transformers. Auto Transformer: Single phase Auto transformer, Volt-Amp relation, efficiency,		
Total No. of Hours	Copper saving, Advantages, disadvantages and applications of autotransformers.	40	

Course	CO1: To define and Introduce the Flow of Energy in Electromechanical Devices, Energy in
Outcomes:	magnetic systems.
	CO2: To explain the Singly Excited Systems; determination of mechanical force, mechanical
	energy, torque equation, Doubly excited Systems; Energy stored in magnetic field,
	Construction of DC Machines, Armature winding, EMF and torque equation,
	Armature Reaction, Performance Characteristics of D.C. motors, Starting of D.C.
	motors; Concept of starting (3 point and 4 point starters),
	CO3: To extend the Three-phase transformer Groups (Phasor groups) and their connections,
	Y-Δ connection, Open delta connection, Three-phase/ 2 - phase Scott connection and
	its application, Single phase Auto transformer, Volt-Amp relation, efficiency, Copper
	saving, Advantages, disadvantages and applications of autotransformers.
	CO4: To illustrate the electromagnetic torque, Generated EMF in machines; torque in
	machines with cylindrical airgap. Review of Single-phase transformer, Three phase
	transformer Construction, Three-phase unit transformer and Bank of three single
	phase transformers with their advantages.
	CO5: To apply the Speed control of D.C. motors; Field Control, armature control and Voltage
	Control (Ward Lenonard method) Efficiency, All day efficiency, Parallel operation
	and load sharing of Single phase and three phase transformers.
	CO6: To analyze the Testing of D.C. machines (Hopkinson's and Swinburn's Test),
	Sumpner's test, polarity test Excitation Phenomenon in Transformers, Harmonics in
	Single phase and 3-phase transformers.

Suggested books:

Sugge	steu books:	
S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	I.J. Nagrath & D.P. Kothari, Electrical Machines, Tata McGraw Hill.	2004
2.	Hussain Ashfaq, Electrical Machines, Dhanpat Rai & Sons.	2016
3.	Irving L. Kosow, Electric Machine and Transformers, Prentice Hall of	1991
	India.	
4.	P.S. Bimbhra, Generalized Theory of Electrical Machines, Khanna	1981
	Publishers.	
5.	Fitzerald, A.E., Kingsley and S.D.Umans, Electric Machinery, MC Graw	1990
	Hill.	

6.	A.E. Fitggerald, C.Kingsley Jr. and Alexander Kusko, Electric Machinery,	1990
	McGraw Hill,International Student Edition.	
7.	M. G. Say, Alternating Current Machines, Pitman & Sons.	1957
8.	O.C. Taylor, The performance & design of A.C. Commutator Motors, A.H.	1988
	Wheeler &Co(P) Ltd.	
9.	Langsdorf, Theory of Alternating Current Machinery, Tata McGraw Hill.	1999

BEE-C305

ELECTRICAL MACHINE-I

CO-PO/PSO MAPPING

	CO 10/150 MM1110																
	Acti on Ver b (CO	Bloo m's Level		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
Course Outcomes (COs)			Engin eering Know ledge	Pro ble m Ana lysi s	Design/De velopment of Solutions	Condu ct Investi gation s of Compl ex Proble ms	Mo der n Too l Usa ge	The Engi neer and Soci ety	Enviro nment and Sustai nabilit y	Ethics	Indi dua l and Tea m Wo rk	Commu nication	Projec t Mana gemen t and Finan ce	Life Lon g Lear ning			
			PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO8	PO 9	PO10	PO11	PO 12	PS O1	PS O 2	PS O 3
CO1	Defi ne	Reme mber L1	3	3				2	2	2				2	3		
CO2	Expl ain	Unde rstan d L2	3	3				2	2	2		2		2	3	3	
CO3	Exte nd	Unde rstan d L2	3	3				2	2	2		2		2	3	3	3
CO4	Illus trat e	Unde rstan d L2	3	3		3		2	2	2		2		2	3	3	3
CO5	App ly	Appl y L3	3	3		3		2	2	2		2		2	3	3	3
CO6	Ana lyse	Analy se L4	3	3		3		2	2	2		2		2	3	3	3
	Ave	erage	3	2		3		2	2	2		2		2	3	3	3

Monning		6 -	41 -	61 -
Mapping		40	<i>60</i> =	100 =
%age	0 - 5 =	= 1	2	3
		Lo		Subst
Manpping	No	w/	Mod	antial
Correlation	correlatio	Slig	erat	/
	n	ht	e	High

Course Code: BEE-C308

Course Name: Electrical Circuit Analysis

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 3
3 0 0	

Prerequisites:	Basic Electrical Engineering , Mathematics
Objectives:	 Concept of graphical solution to electrical network Methodical approach to problem solving. Network Theorem AC circuit analysis, series and parallel resonance, Three phase circuit Two-port network analysis using network parameters Network Synthesis
Course Coordinator	Mr. Yogesh Kumar

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long
	answer type questions of ten (10) marks each and student shall be required to attempt any
	four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of	POs mapped	PSOs mapped
			Hours		
UNIT-1	Module-1	Graph Theory: Graph of a network, definitions, tree, cotree, link. basic loop and basic cut set, Incidence matrix, cut set matrix, Tie set matrix, Duality, Loop and Node method of analysis.	07	PO1/ PO2/ PO3/ PO4	PSO1/PSO2
UNIT-2	Module-2	Network Theorems: Application to ac network- Superposition theorem, Thevenin's Theorem, Norton's theorem, Maximum power transfer theorem, Reciprocity theorem, Millman's theorem, Compensation theorem, Tellegen's theorem.	08	PO1/ PO2/ PO3/ PO4/PO10	PSO1/ PSO3
UNIT-3	Module-3	Network function for	08	PO1/ PO2/	PSO1/
		one-port and two-port, calculation of network		PO3/ PO5	PSO2/PSO3

ĺ	function for ladder and	
	general networks, poles	
	and zeros with	
	restrictions for driving	

	point functions and			
	transform functions,			
	two-port parameters,			
	stability by Routh-			
	Harwitz criterion			
UNIT-4 Module-4	Two port networks:	08	PO1/ PO2/	PSO1/PSO3
	Characterization of		PO3/	
	LTI two port		PO4	
	networks, Z,Y,			
	ABCD and h			
	parameters,			
	reciprocity and			
	symmetry,			
	interrelationship			
	between the			
	parameters,			
	interconnections of			
	two port networks,			
	Ladder and Lattice			
	networks, Image			
	parameters and			
	characteristic			
	impedance.			
UNIT-5 Module-5	Network Synthesis:	08	PO1/PO2/	PSO2/ PSO3
	Positive real function,		PO4/	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	definition and		PO5/PO10	
	properties, properties			
	of LC, RC and RL			
	driving point			
	functions, synthesis of			
	LC, RC and RL			
	driving point			
	immittance functions			
	using Foster and			
	Cauer first and second			
	forms.			
Total No. of Hours		40		

Course
Outcomes:

CO1: To define the Tree, Co-Tree, link, basic loop and basic cut set, Network Theorems: applications to ac networks, Positive Real Function, Definition and Properties LC, RC, RL.

CO2: Explain the Incidence matrix, Tie Set Matrix, Cut Set Matrix, Ladder Networks, Lattice Networks, Driving Point Function, Application to AC Networks, Idea Transformer.

CO3: Illustrate the Graph of a Network, Duality, Image Parameters and Characteristic of impedance, Synthesis of LC, RC, RL in Foster and Cauer form.

CO4: To relate the Interrelations between parameters and Interconnection of Two Port Networks

CO5: To apply the Loop and Node Method Analysis, Superposition Theorem, Thevenin Theorem, Norton Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem, Millman Theorem, Compensation Theorem, Tellegen Theorem, Series and Parallel Resonance, Three Phase AC Circuit, Effective or RMS Value, Average and Complex Power, Reciprocity and Symmetry.

CO6: To analyze Impedance and Admittance, Mutual and Dot Convention Coupled Circuits, AC Circuit Analysis, Representation of Sine function as rotating phasor, Phasor Diagram, Characterization of LTI Two Port Networks, Z, Y, ABCD, h Parameters.

Suggested books:

S.	Name of Authors /Books /Publisher	
No.		Publication
1.	M.E.Van Valkenburg, Network Analysis, Prentice Hall of India.	2019
2.	D.Roy Chaudhary, Networks and Systems, Wiley Eastern Ltd.	2010
3.	A. Chakrabarti, Circuit Theory (Analysis And Synthesis), Dhanpat Rai.	2013
4.	K.M. Soni, Circuit Analysis and Synthesis, S.K. Kataria & Sons.	2012

BEE-C308/BEE-C406 **Electrical Circuit Analysis** CO-PO/PSO MAPPING Acti Bloo on Ver Specific m's **Program Program Outcomes (POs)** Leve Outcomes (PSOs) h (CO Cou Cond Envi rse uct Desig Projec Out ron Engi Inves The Indid com n/Dev Mod men Probl Life neeri tigati Engi elopm ual Comm Manag ern Ethic em ons neer Long ng Tool and (C ent and unicati ement Kno Anal of and Learni Os) of Sust Team and wled ysis Com Socie ng Work Soluti aina Financ plex ge ty bilit ons e Probl y ems PSO **PSO PSO** PO4 PO1 PO2 PO3 PO5 **PO6 PO7 PO8 PO9** PO10 PO11 **PO12** 3 Rem CO Defi embe 3 3 3 3 3 3 2 3 3 3 3 L1 Und Exp CO ersta 3 3 3 3 3 2 3 3 3 3 3 2 lain nd L2 Und Illu CO ersta 3 3 3 3 3 3 3 3 3 3 3 stra nd te L2Und CO Rel ersta 3 3 3 3 2 3 3 3 3 3 3 2 ate nd L2 Appl CO App 3 3 3 3 2 3 3 3 3 3 2 2 3 y L3 ly Anal CO Ana yse L4 3 3 3 3 2 3 3 3 3 3 3 3 2 3 lyse Average 3 3 3 3 2 3 2.33 3 3 3 3 3 2 2.66

Mapping			41 -	61 -
%age	0 - 5	6 - 40	60 =	100
	=	= 1	2	= 3
				Sub
Manpping	110			stan
Correlation	COLIE	Low/	Mo	tial/
	latio	Sligh	der	Hig
	n	t	ate	h

Course Code: BEE-C309

Course Name: Electromagnetic Field Theory

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	Engineering Mathematics, Engineering Physics, Basic Electrical Engineering
Objectives:	 Familiarize the students with the concepts pertaining electric and magnetic fields. Study the Conductor's Dielectric, Inductance, Capacitance.
	 Concept of different Law's and Theorems like Gauss Law, Biot Savart law, Divergence theorem, Stokes theorem, Ampere's law, Poynting theorem.
	4. Study of Electromagnetic waves and Maxwell's equations
Course Coordinator	Dr. Ashish Dhamanda

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10)
	short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions.
	Section-B shall contain eight (08) long
	answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions
	shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-1	Electrostatics Fundamentals: Electric charges, Coulomb's Law, Electric Field Intensity, Linear, Surface and Volume charge density, Gauss Law and its application, electric Scalar Potentials and potential difference, Potential due to uniformly charged disc and uniformly charged line, Electric field lines and equipotential contours, Potential gradient and electric field due to electric dipoles, Conservative nature of electric field.	9	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
UNIT-2	Module-2	Dielectrics & Capacitance: Dielectric boundaries, Capacitance, Capacitance of system of conductors, Overhead lines and underground cables, Electrostatic energy and energy density, Force between charged conductors, dielectric strength and breakdown. Divergence and curl of vector fields, Divergence theorem, Stokes theorem.	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
UNIT-3	Module-3	Magnetic Fields Fundamentals: Magnetic field intensity and magnetic flux density, Biot Savart law, Force	7	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/	PSO1/PSO2/ PSO3

between current carrying wires. Torque on closed circuits, Ampere's law, Magnetic scalar and vector potentials, Boundary conditions at magnetic surfaces.	PO9/ PO10/PO11/PO12
---	------------------------

UNIT-4	Module-4	Magnetic Circuits and Inductance: Faraday's law of electromagnetic induction, Inductor and inductance, Inductance of solenoids, toroids, transmission lines and cables, Mutual inductance, Inductors in series and parallel, energy stored in magnetic field, magnetic circuits.	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
UNIT-5	Module-5	Electro Magnetic Waves: Maxwell's equations, Equation of continuity, displacement current, Maxwell's equation in point and integral forms, The wave equations, Uniform plane wave, relation between electric and magnetic field intensities in a uniform plane wave, Poynting vector, Poynting theorem.	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
Total No.	of Hours		40		

Course Outcomes: CO1: To define the Electric charges, Coulomb's Law, Electric Field Intensity, Linear, Surface and Volume charge density, Gauss Law and its application, Capacitance, Capacitance of system of conductors, Magnetic field intensity and magnetic flux density, Biot Savart law, Ampere's law, Faraday's law of electromagnetic induction, Inductor and inductance, magnetic circuits.

> CO2: To demonstrate the Maxwell's equation in point and integral forms, Uniform plane wave, relation between electric and magnetic field intensities in a uniform plane wave.

> CO3: To explain the electric Scalar Potentials and potential difference, Potential due to uniformly charged disc and uniformly charged line, Electric field lines and equipotential contours, Potential gradient and electric field due to electric dipoles, Dielectric boundaries, Overhead lines and underground cables, Electrostatic energy and energy density, Force between charged conductors, dielectric strength and breakdown.

> CO4: To extend the Force between current carrying wires. Torque on closed circuits, Magnetic scalar and vector potentials, Boundary conditions at magnetic surfaces, Inductance of solenoids, toroids, transmission lines and cables, Mutual inductance, Inductors in series and parallel, energy stored in magnetic field.

> CO5: To illustrate the Conservative nature of electric field, Divergence and curl of vector fields, Divergence theorem, Stokes theorem, Maxwell's equations, Equation of continuity, displacement current, The wave equations, Poynting theorem.

Suggested books:

S.	Name of Authors /Books /Publisher	Year of
No.		Publication

1.	Huseyin R. Hiziroglu, Electromagnetic Field Theory Fundamentals, Cambridge University Press.	2009
2.	Jean G. Van Bladel, Electromagnetic Fields, 2nd Edition, Wiley-IEEE Press.	2007
3.	Gangodhar, K.A., Field Theory, Khanna Pub. Delhi 11th edition.	1994
4.	William H. Hayt, Engineering electromagnetics, Tata- McGraw Hill, 5th edition.	1992
5.	Sarwate, V.V., 'Electromagnetic Fields and Waves', Wiley Eastern Limited, New Delhi.	1993
6.	Mahajan, A.S. and Rangawala, A.A. 'Electricity and Magnetism, Tata-McGraw Hill Publishing Company, Ltd, New Delhi.	1989
7.	Joseph, a. Edminister, Electromagnetic, Schaum's outline Series', International Edition, McGraw Hill Inc., New York.	1993
8.	Narayana Rao, N., 'Elements of Engineering Electromagnetics', Prentics Hall of India.	1991
9.	Ruth V. Buckley, Electromagnetic Fields Theory, Worked Examples and Problems, Red Globe Press London, Macmillan Publishers Limited.	1981

								-C 309										
						Elec			Fields /PSO M	ΔΡΟΙ	NG							
	Action Verb (CO)	Bloom's Level		CO-PO/PSO MAPPING Program Outcomes (POs)											0	Program Specific Outcomes (PSOs)		
Course Outco mes (COs)			Engin eering Knowl edge	Prob lem Anal ysis	evelopm ent of	Conduct Investiga tions of Complex Problems	Mode n Tool Usage	neer and	Environ ment and staina bility	Ethi cs	Indid ual and Team Work	Commu nication	Project Manag ement and Finance	Long Lear	1			
			PO1	PO 2	PO3	PO4	PO 5	PO 6	PO7	P O 8	PO 9	PO10	PO11	PO 12	PS O1	P S O 2	PS O3	
CO1	Define	Rem emb er L1	3	3				3	3	3	3	3	3	3	3	1	2	
CO5	Demor strate		3	3	2	2		3	3	3	3	3	3	3	3	1	2	
CO2	Explair	Und ersta nd L2	3	3	2			3	3	3	3	3	3	3	3	1	2	
соз	Extend	Und ersta nd L2	3	3	2	2	1	3	3	3	3	3	3	3	3	1	2	
CO4	Illustra te	Und ersta nd L2	3	3	2	2	1	3	3	3	3	3	3	3	3	1	2	

Datah	2022	2024	and	onwards
Baich	ZUZ3:	. /.11 /.4	ana	anwaras

Average	2	2	2	2	1	2	2	2	2	2	2	2	2	1	2
Average) 3	3				Э —	Э —	Э	3		5	Э —	3		

Effective from the session 2024-25

Course Code: BET-C307

Course Name: ANALOG CIRCUITS

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	Basic Electronics
Objectives:	The course is aimed at: [1] Imparting knowledge about multistage amplifiers, oscillators, active filters, regulators and IC OP-Amp applications. [2] Teaching about the different applications of op-amp, waveform generators, BJT and FET circuits and solving various quality parameters.
Course Coordinator	VIVEK ARYA

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A
	shall contain of ten (10) short answer type questions of six (06) mark each and student shall
	be required to attempt any five (05) questions. Section-B shall contain eight (08) long
	answer type questions of ten (10) marks each and student shall be required to attempt any
	four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No . of Ho ur s	POs mappe d	PSOs mapped
UNIT-1	Module-1	Multistage Amplifier: Effect of coupling and by-pass capacitors, types of coupling (DC, RC and TC), Darlington connection, cascode amplifier, coupling schemes for multistage amplifier and frequency response of transistor amplifier. Power amplifiers: ClassA, Class B, Class C and Class AB amplifiers and their efficiencies, harmonic distortion, pushpull amplifier. Basic idea of tuned amplifier.		PO1/ PO2/ PO3/ PO4	PSO1/ PSO2

1

W rendib

AS

M. Par

duy of

10	A STATE OF THE STA		-		
NIT-2		IC OP-AMP Applications: OP-AMP Fundamentals (brief review of differential amplifier, current mirror, active load, level shifter, output stage; ac and dc characteristics) Basic building blocks using OP-AMPS. Inverting/ Non-inverting VCVS, Integrators, Differentiators, CCVS and VCCS, Instrumentation Amplifiers.	08	PO1/ PO2/ PO3/ PO4	PSO1/ PSO2
UNIT-3	Module-3	Waveform Generator: Square wave generators: 555Timer, Triangle generator, sawtooth generator, Sine wave generator, Wien-bridge and twin-T oscillators. Function Generators: Multi op-amp function generators, IC function generators, Non-linear Circuits: Logarithmic Amplifiers, Log/Antilog Modules, Precision Rectifier, Peak Detector, Sample and Hold Circuits. OP-AMP as Comparator, Schmitt Trigger, Square and Triangular Wave Generator, Monostable multivibrator. IC Analog Multiplier applications OTA	08	PO1/ PO2/ PO3/ PO4	PSO1/PSO2
UNIT-4	Module-4		08	PO1/ PO2/ PO3/ PO4	PSO1/ PSO2
UNIT-5	Module-5	Oscillators: Positive feedback, Berkhausen criterion for sinusoidal oscillation, Phase-shift oscillator, Weinbridge oscillator, Tuned oscillator, Hartley, Colpitts and Crystal oscillator. Voltage Regulators: OP-AMP Regulators, IC Regulators, Fixed Voltage Regulators (78/79, XX), SMPS.		PO1/ PO2/ PO3/ PO4	PSO1/PSO2

Wall Holid I &

M. Par

Jus

78

8

Total No. of Hours 40

Learning	At the end of the course, a student will be able to:
Outcomes:	그 사람들은 사람들이 모든 사람들이 어떻게 되었다면 하나 하나 사람들이 되었다.
	1. Understand the characteristics of amplifiers
	2. Design and analyze various amplifier circuits
	3. Design sinusoidal and non-sinusoidal oscillators
	4. Understand the different wave from generators and active filters
	5. Understand the functioning of OP-AMP and design OP-AMP based circuits

Suggested books:

1.	Sedra and Smith, Microelectronic Circuits", Oxford University Press, 5th Edition	2005
2.	J. Michael Jacob, Applications and design with Analog Integrated Circuits', PHI, 2 nd Edition	2004
3.	Gayahwad, R.A., Op-Amp and Linear Integrated Circuits, PHI	2015

					C	NALCO-PO	/PSO	C307 IRCUI MAPI MAPI	PING				10			
Course Outcomes (POs) es (COs)												Specif Outco	Program Specific Outcomes (PSOs)			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	PSO1	PSO 2		
CO1	3	I.	3	3								3	3	2		
CO2	3	" dayle	3	3				0 1	, h,			3	3	3		
CO3	3		3	3				1 1			1	3	3	3		
CO4	3		2	1			To the	4 1	177			3	3	3		
CO5	3	i i	2	1		1-18 1				1		3	3	3		
CO6	3	1	1	1		1 3/10	100		1	, P	2500	3	3	1		
CO7	3	1.4	1	3	Tarley Pro	Algorithms (* 145		1		3	3	3		
CO8	3		1	3		V	13	1		100		3	3	3		
CO9	3	4	1	3	Land State of			I Comment	1			3	3	3		
CO10	3		1	1		117.4	711.			1		3	3	3		

1

W RADIR

M. Par

duf

19

^

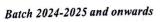
Effective from the session 2024-25

Course Code: BET-351

Course Name: Analog Circuit Lab

MM: 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sessional: 15
Time: 2 Hr.			ESE: 35
LTP			Credit: 1
0 0 2			75.

Prerequisites:	Analog Circuit (BET-C307), Basic Electronics
Objectives:	Students will find frequency response curve of RC Coupled Amplifier, efficiency of A, B & AB Push pull Amplifier, CMRR of differential amplifier etc. by Experiments.
Course Coordinator	Anuj Kumar Sharma
Notes	 In practical examination the student shall be required to perform one experiment. A teacher shall be assigned 20 students for daily practical work in laboratory. No batch for practical class shall consist of more than 20 students. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.


LIST OF EXPERIMENTS:

- 1. To draw the frequency response curve of RC Coupled Amplifier.
- 2. To draw the frequency response curve of Transformer Coupled Amplifier.
- 3. To find the efficiency of A, B & AB Push pull Amplifier.
- 4. To find the frequency of oscillation of various Oscillator.
- 5. To find the CMRR of differential amplifier.
- 6. To study the gain and frequency response of Inverting Amplifier and Non Inverting Amplifier.
- 7. To study the operational amplifier as Differentiator and Integrator.
- 8. To study the Op-Amp as summer and subtractor.
- 9. To study the OP-AMP as square wave generator.
- 10. To study 2nd order Low Pass active Filter and High Pass active Filter.
- 11. To study the hysteresis characteristics of the Op- Amp based Schmitt trigger.
- 12. To study the monostable multivibrator using Timer IC 555.
- 13. To find the frequency of oscillation for a stable multivibrator using Timer IC 555.

Course O	utcomes:	Bloom's Knowledge Level			
CO1	Understanding the Op-Amp circuit used for summer, subtractor, square wave generator, integrator, differentiator.	L2			
CO2	Understanding the concept behind the hysteresis characteristics of the Op- Amp based Schmitt trigger	L2			

1. Par

20

CO3	Analyze the frequency of oscillation for astable multivibrator using Timer IC 555.	L4
CO4	Evaluate the gain and frequency response of Inverting Amplifier and Non Inverting Amplifier.	L5
CO5	Design 2 nd order Low Pass active Filter and High Pass active Filter	L6
CO6	Design monostable multivibrator using Timer IC 555	L6

Course Outcomes (COs)	BET-C351 ANALOG CIRCUITS LAB Program Outcomes (POs)															
	1 1 1 1 1 1 1 1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	Understand	L2	3	1	1	3	0	1	0	0	0	0	0	0	3	3
CO2	Understand	L2	3	0	0	0	0	0	0	0	0	0	0	0	3	3
CO3	Analyze	L4	3	0	1	0	2	1	0	0	0	0	0	2	2	3
CO4	Evaluvate	L5	2	0	3	0	1	1	0	0	0	0	0	0	3	2
CO5	Design	L6	3	3	3	3	2	0	0	0	0	0	0	3	2	3
CO6	Desgin	L6	3	3	3	3	2	0	0	0	0	0	0	3	3	3

1

W

10 mdil

AS

M. Par

duf P

Course Code: BEE-C 351

Course Name: ELECTRICAL MACHINE -I LAB

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 35
L T P	Credit: 1
0 0 2	

Prerequisites:	Basic Electrical Engineering, Electrical Machine-I
Objectives:	The objective of this lab is to give knowledge and provide hands on experience by performing
	various test on electrical machine and determining their characteristics.
Course	Mr. Yogesh Kumar
Coordinator	

Experiments	Lab Content	No. of Hours	POs mapped	PSOs mapped
Exp. No. 1	To obtain magnetization characteristics of a D.C. shunt generator.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 2	To obtain load characteristics of a D.C. compound generator (a) Cummulatively compounded (b) Differentially compounded.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 3	To obtain load characteristics of a D.C. shunt generator	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 4	To obtain speed-torque characteristics of a D.C. shunt motor.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 5	To obtain speed-torque characteristics of a D.C. series motor	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 6	To obtain efficiency of a D.C. shunt machine using Swinburn's test	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 7	To obtain speed control of dc shunt motor using (a) armature resistance control (b) field control	02	PO1/PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 8	To perform open circuit and short circuit tests on a single-phase transformer and	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2

	determine parameters of equivalent circuit.			
Exp. No. 9	To obtain 3-phase to 2-phase conversion by Scott connection.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 10	To obtain efficiency and voltage regulation of a single phase transformer by load test	02	PO1/PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 11	To perform Sumpner's test (back-to-back) on single-phase transformers.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 12	To perform parallel operation of single-phase transformers.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2

Course Outcomes:	 CO1: To determine the characteristics of DC Shunt Generator, DC Series and Shunt motor, efficiency, speed control of DC Shunt motor, also the 3-phase to 2-phase conversion by Scott connection. CO2: To Justify the open circuit and short circuit tests on a single-phase transformer and determine parameters of equivalent circuit, Sumpner's test (back-to-back) on single-phase transformers, parallel operation of single-phase transformers.
---------------------	---

BEE-C351 Electrical Machine-I Lab CO-PO/PSO MAPPING CO-PO/PSO MAPPING

	CO-1 0/1 00 MAI 1 11 10																
	Actio n Verb (CO)	Bloo m's Leve l		Program Outcomes (POs)									Progra Specif Outcon (PSOs	ic nes			
Cour se Outc omes (COs			Engin eering Knowl edge	Proble m Analy sis	Design/Dev elopment of Solutions	Conduc t Investig ations of Comple x Proble ms	Mod ern Tool Usag e	The Engineer and Socie ty	Enviro nment and Sustain ability	Eth ics	Indi dual and Tea m Wor k	Commu nication	Project Manag ement and Financ e	Life Lon g Lear ning			
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO1 2	PS O1	PS O2	PS O3
CO1	Deter mine	Eval uate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
CO2	Justif y	Eval uate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
	Aver	age	3	3	3	3	3	3	2	2	3	3		3	3	3	

Mapping %age	0 - 5	6 - 40 =	41 - 60 =	61 -
Manpping	= No correl	1	2	100 = 3 Substa
Correlation	ation	Low/ Slight	Mod erate	ntial/ High

Mapping Correlation	No correlat ion	Low/ Sligh t	Mod erate	Substa ntial/ High
		1	2	3

Course Code: BEE-C 352

Course Name: ELECTRICAL CIRCUIT ANALYSIS AND SIMULATION LAB

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 35
L T P	Credit: 1
0 0 2	

Prerequisites:	Basic Electrical Engineering
Objectives:	The objective of this lab is to provide hands on experience on software platform the verification of
	different AC theorems, study of RLC circuit, transient response of RL and RC circuits with network parameters.
Course	Mr. Yogesh Kumar
Coordinator	

Experiments	Lab Content	No. of Hours	POs mapped	PSOs mapped
Exp. No. 1	Verification of principle of Superposition theorem with AC source	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 2	Verification of principle of Thevenin's theorem with AC source	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 3	Verification of principle of Norton's theorem with AC source	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 4			PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 5	To study RLC series circuit	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 6	To study RLC parallel circuit	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2/
Exp. No. 7	Determine the transient response of current in RL and RC circuits.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 8	Determine the transient response of current in RLC circuits.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 9	Study T and π networks	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/

Exp. No. 10	Determination of frequency response of current in RLC Circuit with sinusoidal A.C input.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 11	Determination of Z and h Parameters (D.C only) for a network and computation of Y and ABCD parameters	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 12	Determination of driving point and transfer function of a two port ladder network and verify with theoretical values.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 13	Verification of parameter properties in inter-connected two port networks: series, parallel, and cascade also study loading effect in cascade.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/
Exp. No. 14	Determination of frequency response of a Twin- t notch filter.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/ PSO 2/

Course	CO1:	To Explain and verify the Network Theorem in AC Circuits.
Outcomes:	CO2:	To determine the transient response of current in RL, RC and RLC Circuit.
		Determination of frequency response of current in RLC Circuit with sinusoidal A.C input.
	CO3:	To determine the Z and h Parameters for a network and also Determination of driving point impedance and transfer function of a two port ladder network.
	CO4:	Theory and Study of the RLC Series and Parallel Circuit and Study T and π networks.

	BEE-C352 Electrical Circuit and Simulation Lab																
	CO-PO/PSO MAPPING																
	Action Verb (CO)	b m's Program Outcomes (POs)									Progra Specific Outcom (PSOs	e nes					
Course Outco mes (COs)			Enginee ring Knowle dge	ring m Design/Develo ions n er ment Ethi and Communic ment ment and cs Team and ation and Learn													
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO 1	PS O2	PS O3
CO1	Determ ine	Evalu ate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
CO2	Explai n	Evalu ate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
CO3	Theory	Creat e L6	3	3	3	3	3	3	2	2	3	3		3	3	3	
	Aver	age	3	3	3	3	3	3	2	2	3	3		3	3	3	

Mapping %age	0 - 5 = -		41 - 60	61 - 100
mapping / uage	- No	6 - 40 = 1	= 2	= 3
Manpping	correlat	Low/	Moder	Substanti
Correlation	ion	Slight	ate	al/ High

Mapping Correlation	No correlatio n	Low/ Slight	Moder ate	Substanti al/ High
		1	2	3

BEE-C353 SEMINAR BASED ON NEW TECHNOLOGIES

L T P
50
0 0 2
Credit: 1

Objective: To increase the communication ability of the students and to prepare them for presenting seminar on advanced topics of their branch.

Note:

The students will be required to deliver a seminar on a topic of general interest in or any advanced technical topics related to the theory papers studied. The topic will be decided by mutual consent of the Faculty- in- charge and students.

* Total 50 marks include 15 marks for report and 35 marks for presentation.

Learning Outcomes:

- 1. Identify important practical concepts and grasp the depth knowledge of the topic.
- 2. Get in touch with recent technologies.
- 3. Solve industrial problems as a part of industrial training curriculum.
- 4. Sharpen their personality and intelligence, develop effective group communication, presentation, self-management and report writing skills.

Course Code: BEE-C410

Course Name: ELECTRICAL MACHINE-II

MM: 100	Sessional: 30
Time: 4 Hr.	ESE: 70
LTP	Credit: 0
3 0 0	

Prerequisites:	Electrical Machines-I
Objectives:	1: To understand the operation of synchronous machines.
	2: To understand the Starting and speed control methods of Induction Motor.
	3: To understand and analyze of functioning of various electrical machines.
Course	Mr. Yogesh Kumar
Coordinator	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
HOIL.	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-1	Synchronous Machine-Generator: Constructional features, Armature winding, EMF Equation, Winding coefficients, equivalent circuit and phasor diagram, Armature reaction, O. C. & S. C. tests, Voltage Regulation using Synchronous Impedance Method, MMF Method, Potier's Triangle Method, Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient.	9	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/POS 3
UNIT-2	Module-2	Synchronous Machine-Motor: Two Reaction Theory, Power flow equations of cylindrical and salient pole machines, operating characteristics, Starting methods, Effect of varying field current at different loads, V-Curves, Hunting & damping, synchronous condenser.	8	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/POS 3

Batch 2023-2	024 and onwar				
UNIT-3	Module-3	Three phase Induction Machine – I: Constructional features, Rotating magnetic field, Principle of operation Phasor diagram,	9	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/POS 3
		equivalent circuit, torque and power equations, Torque-slip characteristics, no load & blocked rotor tests, efficiency, Induction generator.			
UNIT-4	Module-4	Three phase Induction Machine-II: Starting, speed control (with and without emf injection in rotor circuit), Deep bar and double cage rotors, Cogging & Crawling.	7	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/POS 3
UNIT-5	Module-5	Single phase Induction Motor: Double revolving field theory, Equivalent circuit, No load and blocked rotor tests, Starting methods, repulsion motor. AC Commutator Motors: Universal motor, Single-phase a.c. series compensated motor, stepper motors.	7	PO1/PO2/PO4/PO 6/PO7/PO8/PO10/ PO12	PSO1/PSO2/POS 3
Total No. of Hours			40		

Batch 2023-202	24 and onwards				
Course	CO1: To recall the Constructional features, Armature winding, EMF Equation,				
Outcomes:	Winding coefficients, equivalent circuit and phasor diagram, Armature				
	reaction.				
	CO2: To explain the Two Reaction Theory, Power flow equations of cylindrical				
	and salient pole machines, operating characteristics, Constructional				
	features, Rotating magnetic field, Principle of operation Phasor diagram, equivalent circuit, torque and power equations.				
	CO3: To extend the Voltage Regulation using Synchronous Impedance Method,				
	MMF Method, Potier's Triangle Method, Universal motor, Single-phase				
	A.C. series compensated motor, stepper motors.				
	CO4: To illustrate the Parallel Operation of synchronous generators, operation on infinite bus, synchronizing power and torque co-efficient, V- Curves,				
	Hunting & damping, synchronous condenser, efficiency, Induction generator,				
	CO5: To apply the Starting methods, Effect of varying field current at different				
1	loads, Starting, speed control (with and without emf injection in rotor				
	circuit), Deep bar and double cage rotors, Cogging & Crawling.				
	CO6: To experiments with the O. C. & S. C. tests, Torque-slip characteristics, no load & blocked rotor tests.				

Suggested books:

S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	Hussain Ashfaq, Electrical Machines, Dhanpat Rai & Sons.	2016
2.	D.P. Kothari & I.J. Nagrath, Electrical Machines, Tata McGraw Hill.	2004
3.	Irving L. Kosow, Electric Machine and Transformers, Prentice Hall of	1991
	India.	
4.	P.S. Bimbhra, Generalized Theory of Electrical Machines, Khanna	1981
	Publishers.	
5.	Fitzerald, A.E., Kingsley and S.D.Umans, Electric Machinery, MC Graw	1990
	Hill.	
6.	A.E. Fitggerald, C.Kingsley Jr. and Alexander Kusko, Electric Machinery,	1990
	McGraw Hill, International Student Edition.	
7.	M. G. Say, Alternating Current Machines, Pitman & Sons.	1957
8.	O.C. Taylor, The performance & design of A.C. Commutator Motors,	1988
	A.H. Wheeler &Co(P) Ltd.	
9.	Langsdorf, Theory of Alternating Current Machinery, Tata McGraw Hill.	1999

Course Name: POWER ELECTRONICS

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit : 4
3 1 0	

Prerequisites:							
Objectives:	 To understand the power semiconductor controlled and uncontrolled switches, working and characteristics. To familiarize different protection circuit and analysis of DC-DC Converter. To study and analysis of AC-DC converters. To study and analysis of AC-AC converters. 						
	To study and analysis of DC-AC converters						
Course	Mr. Brijesh Kumar						
Coordinator							

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08) long answer
	type questions of ten (10) marks each and student shall be required to attempt any
	four questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of	POs	PSOs
			Hours	mapped	mapped
UNIT-1	Module-1	Power Semiconductor Devices: Power semiconductor devices their symbols and static characteristics and specifications of switches, types of power electronic circuits BJTO operation steady state and switch characteristics, switching limits Operation and steady state characteristics of <i>MOSFET and IGBT</i> Thyristor – Operation <i>V- I characteristics</i> , two transistor model, methods of turn-on Operation of GTO, MCT and TRIAC		PO1/ PO2/ PO3/ PO6/ PO7/ PO12	PSO1/ PSO2
UNIT-2	Module-2 Module-3	Power Semiconductor Devices (Contd.): Protection of devices, Series and parallel operation of thyristors Commutation techniques of thyristor. DC-DC Converters: Introduction of Buck, Boost & amp; Buck boost Converters. Principles of stepdown chopper, step down chopper with R-L load Principle of step-up chopper, and operation with RL load, Classification of choppers.		PO1/ PO2/ PO3/ PO6/ PO7/ PO10/ PO12	PSO1
UNIT-3	Module-4	Phase Controlled Converters: Single-phase half	08	PO1/	PSO1/

Sung

Suggested books

References

wave controlled rectifier with resistive and inductive loads, effect of freewheeling diode. Single phase fully controlled and half-controlled bridge		PO2/ PO3/ PO4/ PO6/ PO11	PSO2
converters. Performance Parameters Three phase half wave converters Three phase fully controlled and half controlled bridge converters, Effect of source impedance Single phase and three phase dual converters. UNIT-4 Module-5 AC Voltage Controllers: Principle of On-Off and		PO1/	PSO1/
phase controls Single phase ac voltage controller with resistive and inductive loads Three phase ac voltage controllers (various configurations and comparison) Single phase transformer tap changer. Cyclo Converters Basic principle of operation, single phase to single phase, three phase to single phase and three phase to three phase cyclo converters, output voltage equation.		PO2/ PO3/ PO6/ PO11/ PO12	PSO2
UNIT-5 Module-6 Inverters: Single-phase series resonant inverter Single phase bridge inverters Three phase bridge inverters Voltage control of inverters Harmonics reduction techniques Single phase and three phase current source inverters.		PO1/ PO2/ PO3/ PO6/ PO7/ PO11/ PO12	PSO1
Total No. of Hours	40		

Course	CO1. Understanding the different types of power semiconductor switches and their working.
Outcomes:	CO2. Analyze the various types of power electronics converters.
	CO3. Able to Select appropriate power semiconductor switch to design the power electronics
	converters.
	CO4 . Able to explain the application of power electronics converters.
	CO5. Able to explain the importance of power electronics that make human life easy, clean and
	Eco-friendly.
	-

S. No.	Name of Authors /Books /Publisher	Year of Publication	
	Text Books		
1.	Dr. P. S. Bimbhra, Power Electronics, Khanna Publishers, Fifth Edition.	1990	
2.	M.H. Rashid, Power Electronics: Circuits, Devices & Devices & Applications, Prentice Hall of India Ltd. 3rd Edition.	2004	
3.	M.D. Singh and K.B. Khanchandani, Power Electronics, Tata MC Graw Hill.	2005	

Electrical Engineering, Faculty of Engineering & Technology, GK (DU), Haridwar

M.S. Jamil Asghar, Power Electronics, Prentice Hall of India Ltd.

2004

2	Abhijit Chakrabarti. Fundamentals of Power Electronics and Drives, Danpat Rai	2002
3	Bimal K. Bose, Power Electronics and Motor Drives Advances and Trends, Academic Press is an imprint of Elsevier,	2006

Cou rse Out	Act ion Ver	Bloom 's Level				Pr	ogram	Outcon	nes (POs)						Speci (PSO	
com es	b		Engi neeri ng kno wled ge	Pro ble m ana lysi s	Desig n /devel opme nt of soluti ons	Cond uct invest igatio ns of comp lex probl ems	Mo der n too l usa ge	The eng ine er and soc iety	Envi ron men t and sust aina bilit y	Et hic s	Individ ual and team work	Co m mu nic ati on	Proj ect man age men t and fina nce	Lif e- lon g lea rni ng			
			PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO 10	PO1 1	PO 12	P S O 1	P S O 2	P S O 3
CO 1	Des cri be	Under standi ng	3	3	2	2		1	3				1	3	3	3	3
CO 2	An aly ze	Analy zing	3	3	3	2		1	2				1	2	1	1	1
3	Sol ve	Apply ing	3	2	3	3		1	3				1	1	2	2	1
CO 4	Ex plai n	Under standi ng	3	2	3	2		1	3				1	1	3	3	3
CO 5	Des cri be	Reme mberi ng	3	3	2	2		1	3				1	2	2	2	1

Course Name: ELECTRICAL MEASUREMENT AND MEASURING

INSTRUMENTS

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	Elements of electrical engineering, electrical circuits, digital & analog electronics
Objectives:	1. To understand the Electrical measurements.
	2. To Work with analog & digital electronics principles.
	3. To address the underlying concepts & methods behind Electrical
	measurements
	4. To identify & formulate solutions to problems relevant to
	Electrical measurements
Course	Mr. Gaurav Kumar
Coordinator	

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall
	contain of ten (10) short answer type questions of six (06) mark each and student shall be
	required to attempt any five (05) questions. Section-B shall contain eight (08)long answer
	type questions of ten (10) marks each and student shall be required to attempt any four
	questions. Questions shall be uniformly distributed from the entire syllabus

UNIT	Module	Course Content	No. of	POs	PSOs
			Hours	mapped	mapped
UNIT-1	Module-1	Philosophy Of Measurement:	06	PO1/PO	PSO1/
		Methods of Measurement,		2/PO4/P	PSO2/
		Measurement System,		O5/PO6	PSO3
		Classification of instrument			
		systems , Characteristic of			
		instrument & measurement			
		system, Errors in Measurement &			
		its Analysis, Standards			
	Module-2	Electrodynamics ,Thermocouple	04	PO1/	PSO1/
		Electrostatic & rectifier type		PO2/PO	PSO2
		Ammeters & Voltmeters ,		6	
		Electrodynamics Wattmeter,			
		Three Phase Wattmeter, Power in			
		three Phase System, Errors &			
		remedies in Wattmeter and energy			
		meter			
UNIT-2	Module-3	Instrument Transformer (CT	06	PO1/	PSO1/
		and PT), and their application in		PO2/PO	PSO2/
		the extension of instrument range,		4/PO6	PSO3
		Introduction to measurement of			
		speed, Frequency and Power			
		factor, Vibration etc.			
UNIT-3	Module-4	Different methods of measuring	06	PO1/	PSO1/
		low, medium and high resistances,		PO2/PO	PSO2
		Measurement of Inductance &		5/PO6	

		Capacitance with the help of AC Bridges,			
UNIT-4	Module-5	Polar type & Co-ordinate type AC potentiometer, Application of AC Potentiometers in Electrical measurement. Magnetic Measurement: Ballistic Galvanometer, Flux meter, Determination of Hysteresis loop, Measurement of iron losses	05	PO1/PO 4/PO5/P O6	PSO1/ PSO2
UNIT-5	Module-6	Concept of digital Measurement, Block Diagram Study of digital voltmeter, frequency meter power analyzer and harmonics analyzer; Electronic Multimeter	08	PO1/PO 5/PO6	PSO1
	Module-7	Electronic multimeter, Power Analyzer, Harmonics analyzer, , Electronic multimeter, Power Analyzer, Harmonics analyzer, Basic CRO circuit (Block Diagram), Cathode ray tube (CRT) & its component, Application of CRO in measurement, Lissajous Pattern., Dual trace & dual beam Oscilloscope	05	PO1/PO 5/PO6	PSO1
Total No	of Hours		40		

Course Outcomes:

- 1. **Develop** the knowledge of theoretical and mathematical principles of electrical measuring instruments.
- 2. **Examine** various real life situations in domestic or industrial scenario where measurements of electrical quantities are essential.
- 3. **Choose** the proper type and specification of measuring procedure and measuring instruments for different industrial/commercial/domestic applications.
- 4. **Assess** fault conditions in electrical installations and identify necessary remedial measures.
- 5. **Design** new sensing and measuring schemes for various electrical and electronic applications.
- 6. **Recognize** basic supporting tools for applications in other electrical engineering core fields.

Suggested books:

S.	Name of Authors /Books /Publisher	Year of
No.		Publication
1.	A.K. Sawhney, "Electrical & Electronic Measurements &	2010
	Instrumentation `", 4th `Ed, Dhanpat Rai & sons, ISBN-0070699674	
2.	E.W. Golding & F.C. Wides, "Electrical Measurement & Measuring	2005
	Instruments", 1 ST "Wheeler Publishing", "ISBN- 0132472058	
3.	H.S. Kalsi, "Electronic Instruments", Tata Mc-Graw hill", 2nd Edition,	2008
4	A.J. Bouwens ,"Digital Instrumentation", Tata Mc-Graw hill.	1986
5	A.D. Heltric & W.C. Copper, "Modern Electronic instrumentation &	1992
	Measuring instruments", Wheeler Publication	

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Y	Y	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y
2	1	Y	1	Y	1	-	-	Y	-	Y	-	Y	Y	Y	
3	Y	Y	-	-	-	-	-	-	-	-	Y	Y	Y		
4	Y	Y	Y	-	-	-	-	-	-	-	-	Y			
5	Y	Y	Y	Y	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	
6	Y	-	Y	Y	-	-	-	Y	-	-	-	Y	Y	Y	

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	-	-	-	-	-	-	-	-	-	2	2	2	1
2	-	3	-	3	-	-	-	3	-	3	-	3	3	2	
3	3	3	-	-	-	-	-	-	-	-	3	2	2		
4	3	3	2	-	-	-	-	-	-	-	-	3			
5	3	3	2	3	1	3	3	3	2	3	2	3	1	3	

Correlation levels 1, 2 or 3 as defined above: 1: Slight (Low) 2: Moderate (Medium)3: Substantial(High) and "-" if there is no correlation.

Course Code: BEE-C413

Course Name: Signals and Systems

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
L T P	Credit: 3
3 0 0	

Prerequisites:	Engineering Mathematics
Objectives:	To describe various signals and systems mathematically and understand how to perform mathematical operations on them: 1. Understand mathematical description and representation of continuous and discrete time. 2. Concept of Fourier Series and Fourier Transform. 3. Concept of Time and Frequency Characterization of Signals and Systems. 4. Knowledge of Sampling and Laplace Transform. 5. Study the Random variable and various functions.
Course Coordinator	Dr. Ashish Dhamanda

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain of ten (10)
	short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions.
	Section-B shall contain eight (08) long answer type questions of ten (10) marks each and student shall be required
	to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus.

UNIT	Module	Course Content	No. of Hours	POs mapped	PSOs mapped
UNIT-1	Module-1	Signals and Systems: Continuous-time and discrete-time Signals, Transformations of the Independent Variable, Exponential and Sinusoidal Signals, Continuous-Time and Discrete-Time LTI Systems and their properties, convolution sum and convolution integrals, LTI System described by differential and difference equations. Z-Transform: Z-Transform, Region of convergence, Inverse Z-transform, analysis and characterization of LTI system, Block diagram representation, Unilateral Z-transform.	9	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
UNIT-2	Module-2	Fourier Series and Fourier Transform: The response of LTI Systems to Complex Exponentials, Fourier Series Representation of Continuous-time Periodic Signals and their Properties, Continuous time and discrete time Fourier Transforms and their properties, System Characterized by Linear Constant Coefficient Differential equations and	7	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3

		Difference equations.			
UNIT-3	Module-3	Time and Frequency Characterization of Signals and Systems: Magnitude Phase Representation of the Fourier Transform, Magnitude Phase Representation of the Frequency response of LTI systems, Time domain Properties	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
		of Ideal Frequency Selective filter, Time Domain and Frequency Domain aspects of Non ideal filters, First Order and Second Order Continuous Time and Discrete time Systems.			
UNIT-4	Module-4	Sampling and Laplace Transform: Signal representation by samples, sampling theorem, Impulse train sampling, sampling of discrete time signals, discrete time processing of continuous time signals. Laplace Transform, Region of convergence, inverse Laplace Transform, Analysis and characterization of LTI System, Block diagram representation, Unilateral Laplace transform.	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
UNIT-5	Module-5	Random variable, random process correlation functions, cumulative distribution function, probability density function, joint-cumulative distribution, probability density function. Expectation, mean, variance, covariance, autocorrelation, power spectral density, Gaussian Pdf and Raleigh Pdf.	8	PO1/ PO2/ PO3/ PO4/PO5/ PO6/PO7/ PO8/ PO9/ PO10/PO11/PO12	PSO1/PSO2/ PSO3
Total No.	of Hours		40		

Course Outcomes:

CO1: To define the Continuous-time and discrete-time Signals, Signal representation by samples, sampling theorem, Impulse train sampling, sampling of discrete time signals, Random variable, random process correlation functions, cumulative distribution function.

CO2: To explain the Transformations of the Independent Variable, Exponential and Sinusoidal Signals, Continuous-Time and Discrete-Time LTI Systems and their properties, The response of LTI Systems to Complex Exponentials, Magnitude Phase Representation of the Fourier Transform, probability density function, joint-cumulative distribution, probability density function.

CO3: To Extend the convolution sum and convolution integrals, LTI System described by differential and difference equations, Fourier Series Representation of Continuous-time Periodic Signals and their Properties, Magnitude Phase Representation of the Frequency response of LTI systems, Expectation, mean, variance, covariance, auto-correlation, power spectral density.

CO4: To illustrate the Continuous time and discrete time Fourier Transforms and their properties, System Characterized by Linear Constant Coefficient Differential equations and Difference equations, Discrete time processing of continuous time signals.

CO5: To Relate the Region of convergence, analysis and characterization of LTI system, Time domain Properties of Ideal Frequency Selective filter, Time Domain and Frequency Domain aspects of Non ideal filters, First Order and Second Order Continuous Time and Discrete time Systems, Region of convergence, Analysis and characterization of LTI System, Gaussian Pdf and Raleigh Pdf.

CO6: To Apply the various block diagram representation of Z-Transform, Laplace Transform, Inverse Z-transform, Unilateral Z-transform, inverse Laplace Transform, Unilateral Laplace transform.

Suggested books:

S. No.	Name of Authors /Books /Publisher	Year of Publication
1.	Michael Roberts, Govind Sharma, Fundamentals of Signals and Systems (SIE) e/2, McGraw Hills	2017
2.	V. Oppenheim, A.S. Willsky and S. Hamid Nawab, 2nd Edn, Pearson Education India.	2015
3.	Charles Phillips, John Parr, Eve Riskin, Signals, Systems, & Transforms 5th Edition, Pearson	2013
4.	B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford,	2009
5.	Simon Haykin,"Signals and Systems",Secod Edition,John Wiley.	1999
6.	R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems, Continuous and Discrete", Pearson.	2007
7.	John Alan Stuller, —An Introduction to Signals and Systems , Thomson.	2007

BEE-C 413

Signals and Systems

CO-PO/PSO MAPPING

					CO-P	O/PSO MAPI	PING										
	Action Verb (CO)	Bloom's Level					Prog	ram Outo	comes (POs)						_	ram Sp outcom (PSOs)	es
Course Outcom es (COs)			Engineeri ng Knowledg e	m	Design/Develop ment of Solutions	Conduct Investigatio ns of Complex Problems	Mode rn Tool Usage	The Engine er and Societ y	Environme nt and Sustainabil ity	Ethi cs	Indid ual and Team Work	Communica tion	Project Managem ent and Finance	Life Long Learni ng			
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	Define	Rememb er L1	3	3	3	3		3	3	3	3	3	3	3	3		3
CO2	Explai n	Underst and L2	3	3	3	3	2	3	3	3	3	3	3	3	3		3
соз	Extend	Underst and L2	3	3	3	3		3	3	3	3	3	3	3	3	2	3
CO4	Illustra te	Underst and L2	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3
CO5	Relate	Underst and L2	3	3	3	3		3	3	3	3	3	3	3	3	2	3
CO6	Apply	Apply L3	3	3	3	3	2	3	3	3	3	3	3	3	3		3
	Av	erage	3	3	3	3	2	3	3	3	3	3	3	3	3	2	3

Effective from the session 2024-25

Course Code: BKT-A403

Course Name: BHARTEEYA JNANAPARAMPARA

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 0
2 0 0	

समस्त स्नातक स्तर की कक्षाओं हेतु अनिवार्य पाठ्यक्रम

तृतीय / चतुर्थं सत्र Semester III/IV

समय (Time) – 03 घंटे (Hours)

पृणांक - 100

सत्रान्तपरीक्षा -70

आन्तरिकपरीक्षा – 30

Credit- 0

BK I - ८३०) - ८४०) चार्माव जानवस्था

Blarteeva Juanaparampara प्रस्ताचित पाठ्यक्रम (Prescribed Course)

घटक-।

- । चंदिक एवं लोकिक माहित्य का परिचय एवं उमका उद्देश्य (वैदिक माहित्य,आर्ष माहित्य एवं स्मृति साहित्य)
- 2 बेदिक प्रार्थनाएं गायत्री, भद्रप्राप्ति, शान्ति, संगठन, सोमनस्य एवं पञ्च महायत का सामान्य परिचय
- 3 ब्रह्मचर्य महिमा, वेटिक राष्ट्रभक्ति एवं शिवसकल्प (ब्रह्मचर्य मृक्त- अथरंवेद ।। 5. पृथिवी सृक्त -अथर्वेद ।२ ।, शिवसकल्प मृक्त - यतुर्वेद २४ । क में वर्णित विषयवस्तु के आधार पर)

UZ35-7

- । वैदिक कालीन मामाजिक एव शिक्षा व्यवस्था
- 2 संस्कारों की जीवन में उपयोगिता
- 3 पुरुषार्थं चतुष्टच धर्म, अर्थ, काम, मोक्ष

घटक-३

- । त्रेतवाद ईधर, जीव एव प्रकृति का स्थम्प
- 2 कर्म एव पुनर्जन्म मिडाना (कर्म- निष्काम कर्मयोग एवं कर्मफल सिडाना)

घटक--

- । मानव जीवन के विकास में योग की महना
- 2 अष्टांग योग- यम, नियम, आमन, प्राणायाम, प्रत्याहार ,धारणा, ध्यान, समाधि

घटक-5

- । भारतीय सम्कृति एव सध्यता : एक परिचय
- 2 महर्षि दयानन्द एव स्वामी श्रहानन्द का व्यक्तित्व एवं कतित्व
- 3 आर्य ममाज की स्थापना, उद्देश्य एवं कार्य (मामाजिक जनजागरण, अछूनोद्धार, महिला शिक्षा, शुद्धि आन्दोलन, सामाजिक कुरीतियों का उन्मलन, स्वतन्त्रता मग्राम में योगदान)

महायक पुस्तकें -

- । वैदिक माहित्य एवं संस्कृति, डॉ॰ कपिन देव द्विवेदी।
- 2 उपनिषद दीपिका, डॉ॰ गमनाथ वंदालकांग
- 3 वैदिकदर्शन, डॉ॰ कपिल देव द्विवेदी, विधविद्यालय प्रकाशन, वागणसी
- 4 प्राचीन भारत तथा मामाजिक एवं आर्थिक इतिहास, डॉ॰ देवेन्द्र गुप्ता, भारतीय बुक कॉपॉरेशन, नई दिल्ली I
- 5 योगदर्शन, स्वामी रामदेव, पतजील योगपीठ, हरिद्वार ।
- 6 मन्यार्थ प्रकाण, म्बामी दयानन्द।
- 7 आर्यममात्र का इतिहास, डॉ॰ सत्यकेत् विद्यालंकार।
- 8 भाग्तीय नवजागरण के प्रोधा, डॉ॰ भवानी लाल भाग्तीय
- ७ संस्कृत साहित्य का इतिहास, डॉ॰ कपिल देव द्विवेदी, विश्वविद्यालय प्रकाशन, वाराणसी

M. Pai

Effective from the session 2024-25

Course Code: BET-C306/BET-C414

Course Name: DIGITAL SYSTEM DESIGN

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 1 0	

Prerequisites:	For this course, no pre-requisites are required. But should have knowledge of Diodes, transistors.
Objectives:	 To get good knowledge of digital system. Learn about the different number system that have different bases which plays very significant role in computer world. During the course we can learn how to design the digital circuits by using Boolean algebra, K-maps and logic gates. And to enable to implement synchronous state machines using flip-flops.
Course Coordinator	Dr. Tanuj Kumar Garg

NOTE:	The question paper shall consist of two sections (Section-A and Section-B). Section-A shall contain Ten (10) short answer type questions of six (06) mark each and student shall be required to attempt any five (05) questions. Section-B shall contain eight (08)long answer type questions of ten (10) marks each and student shall be required to attempt any four questions. Questions shall be uniformly distributed from the entire syllabus
-------	---

UNIT	Module	odule Course Content No		POs mapped	PSOs mapped		
UNIT-1	Module- 1	Number System: Representation of negative numbers, 9's and 1's complement, 10's and 2's complement, arithmetic using 2's complement. BCD Code, Gray Code, Excess-3 Code, Introduction to Boolean algebra, Truth table verification of various gates, Realization of Switching functions with gates.	3	PO1/ PO2/ PO3/ PO5/ PO10/PO12	PSO1/PSO2		
	Module- 2	K- Map: Representation up to 4 variables, simplification and realization of various functions using gates, Tabular Method, Combinational logic and design procedure.	3	PO1/ PO2/ PO3/ PO5/ PO10/PO12	PSO1/ PSO2		

V JOHNIE -1

M. Par

duf any q

17

UNIT-2	Module-3	Combinational logic Circuits: Arithmetic circuits, Half and Full adder, Subtractors, BCD adders, Code Conversion, 4 bit Magnitude Comparator (IC -7485), Cascading of IC 7485, Decoder, Multiplexer, Demultiplexers, Encoders. Parallel Binary adder, IC 7483, 4-bit Binary parallel adder/subtractor,	9	PO1/PO2/ PO3/PO5/ PO10/PO12	PSO1/PSO2
UNIT-3 Module-		Sequential Logic Circuits: Flip Flops, S-R latch, gated latches, Edge triggered Flip Flops, Master-slave Flip Flops, Conversion of flip flops, Analysis of clocked sequential circuits, Design of synchronous circuits, State transition diagram, state reduction and assignment.	10	PO1/ PO2/ PO3/ PO5/ PO10/PO12	PSO1/PSO2
UNIT-4	Module- 5	Counters: Design of Asynchronous and Synchronous Counters, Two bits & four bits up & down counters and their design, Shift registers, Serial & Parallel data transfer, Shift left/Right register, Shift Register applications.	8	PO1/PO2/ PO3/PO5/ PO10/PO12	PSO1/PSO2
UNIT-5	Module-6	Logic Families: Diode switching, Transistors as a switching element, MOS as a digital circuit element, concept of transfer characteristics, input characteristics and output characteristics of logic gates, fan in, fan out, noise margin, Logic families: TTL, IIL, ECL, NMOS, & CMOS, Open collector outputs.	7	PO1/ PO2/ PO3/ PO5/ PO10/PO12	PSO1/PSO2
Total No.	of Hours		40		

Le	arnin	g
	tcom	

At the end of this course students will demonstrate the ability to

- Design and analyze combinational logic circuits.
- Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder.
- Design & analyze synchronous sequential logic circuits.

Suggested books:

S.	Name of Authors /Books /Publisher	Year of Publication
No.	M.Morris Mano, Digital Design, PHI	XXXX
2	R.P.Jain, Modern Digital electronics, TMH	XXXX
3.	A Anand Kumar Fundamentals of Digital Circuits, PHI	XXXX
4.	Lee S.C. Modern Switching Theory and Digital design, PHI	XXXX
5.	Greenfield J.D., Practical Digital design using ICs, John Wiley.	AAAA

		p .			DI	GITA CO-P	LSYS	STEM	DES	-C414 IGN G				
Course	Progra	am Outco	omes (PC)s)			V/1-0.	11212					(PSOs)	m Specific Outcome
Outcomes	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
(COs)		102			3			0				3	3	3
CO1	3		3	3	100					100		3	3	3
CO2	3	- X	3	3	3		100	16 0		100			3	3
CO3	3		3	3	3							3		
	3	-	2	1	3	10 M		19	2 42 5	W CO		3	3	3
CO4	3		17 11	-	1			212		W 255		3	3	3
CO5	3		2	1	3					1	10	3	3	3
C06	3	1	1	1	3		100	6.1		100	24			3
C07	3	-	1	3	3	1		The state of				3	3	
et albeite Willeld I		100		3	3		2.85			1 1		3	3	3
CO8	3		1			California			9/	- 6		3	3	3
CO9	3	1 100	1	3	3			1					3	3
CO10	3	1	1	1	3					H. dr		3	3	

1

KARINA

M. Par

def any

Effective from the session 2024-25

Course Code: BET-C355/BET-C464
Course Name: Digital System Design Lab

MM: 100	Sessional: 15
Time: 3 Hr.	ESE: 35
LTP	Credit: 1
0 0 2	

Prerequisites:	Basic Electrical Engg.
Objectives:	Students will perform different combinational and sequential digital circuits using gates and ICs.
Course Coordinator	Dr. Ashish Nainwal
Notes	 In practical examination the student shall be required to perform one experiment. A teacher shall be assigned 20 students for daily practical work in laboratory. No batch for practical class shall consist of more than 20 students. The number of students in a batch allotted to an examiner for practical examination shall not exceed 20 students. Addition/deletion in above list may be made in accordance with the facilities available with the approval of H.O.D./Dean.

LIST OF EXPERIMENTS:

List of Experiments	No of hours	PO mapped	PSO mapped
1. To verify the truth tables of various types of gates using IC 7400.	2	PO1/PO2	PSO1/PSO2
2. To verify the truth tables of Multiplexer & also implement a function using Multiplexer.	2	PO1/PO2/ PO3/PO4	PSO1/PSO2
3. To design & verify the truth table of half & full adder.	2	PO1/PO2/ PO3	PSO1/PSO2
 To design & verify the truth table SR flip-flop using NOR/NAND gates. 	2	PO1/PO3/ PO4	PSO1/PSO2
To design & verify the truth table JK flip-flop using NOR/NAND gates.	2	PO1/PO2/ PO3	PSO1/PSO2
6. To design & study counters.	2	PO1/PO2 PO4	PSO1/PSO2
7. To design & study Shift registers.	2	PO1/PO2/ PO3/PO4	PSO1/PSO2
8. To verify the truth tables of de Multiplexer.	2	PO1/PO2/ PO3/PO4	PSO1/PSO2

1

M. Pai

24

Course Or	stromos	Bloom's Knowledge Level
CO1	Understanding of Digital Binary System and implementation of Gates.	L2
CO2	Analyze the Sequential circuits with the help of combinational circuits and feedback element.	L4
CO3	Evaluate and design the counters with the neip of	L5
CO4	Design data selector circuits with the help of universal	
C05	Design the shift registers using sequential circuit and basic Gates	L6

					D	igital CO-P	BET Syste O/PS	7-C35 em De Q MA	5/BE esign l APPIN	T-C4 Lab NG	64					
Course	100000000000000000000000000000000000000	1	Progr	am Out								1.1	V 20		7001	PSO2
Outcomes	100	7 191	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSOZ
(COs)	1 1						100		1			100		sejenos:	3	3
CO1	Define	LI	3		170 50.500			1000		101 T	-	1. T. 1. (C.E.)		2 9	3	3
CO2	Interpret	L2	3	2	2		100	and the		377		kg 5 5		A 100	2	2
		L2	3	2	2	Chr. a	100	Water Williams		Service.	100				2	-
CO3	Explain	LL	,	7 /	100				100		300	3777			2	3
CO4	Experiment with	L3	3	3	3	2										
		- 5		1.31				1000		C. Santa					2	3
CO5	Analyze	L4	3	3	2	2		Man a	100	W. 80 1		9		14.50		

Mondile

A. Par

Org.

Course Name: ELECTRICAL MACHINE-II LAB

MM: 50	Sessional: 15
Time: 2 Hr.	ESE: 35
LTP	Credit: 1
0 0 2	

Prerequisites:	Electrical Machine-I
Objectives:	The objective of this lab is to give knowledge and provide hands on experience by performing various test on electrical machine and determining their characteristics.
Course Coordinator	Mr. Yogesh Kumar

Experiments	Lab Content	No. of Hours	POs mapped	PSOs mapped
Exp. No. 1	To perform no load and blocked rotor tests on a three phase squirrel cage induction motor and determine equivalent circuit.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 2	To perform load test on a three phase induction motor and draw: (i) Torque-speed characteristics (ii) Power factor-line current characteristics	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 3	To perform no load and blocked rotor tests on a single phase induction motor and determine equivalent circuit.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 4	To study speed control of three phase slip ring induction motor by varying rotor resistance.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 5	To perform open circuit and short circuit tests on a three phase alternator and determine voltage regulation at full load and at unity, 0.8	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2

	lagging and leading power factors by (i) EMF method (ii) MMF method.			
Exp. No. 6	To determine V-curves and inverted V-curves of a three phase synchronous motor.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 7	To determine Xd and Xq of a three phase salient pole synchronous machine using the slip test	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2
Exp. No. 8	To study the synchronization of an alternator with bus bars.	02	PO1/ PO2 PO3/ PO4/PO5/PO6/PO7/PO8/PO9/PO10/PO12	PSO 1/PSO 2

Outcomes:

Course

- **CO1:** To determine the V-curves and inverted V-curves of a three phase synchronous motor, and Xd and Xq of a three phase salient pole synchronous machine using the slip test.
- **CO2:** To explain and study the speed control of three phase slip ring induction motor by varying rotor resistance and the synchronization of an alternator with bus bars.
- CO3: To justify the no load and blocked rotor tests on a three phase squirrel cage induction motor and determine equivalent circuit, Load test on a three phase induction motor and draw: (i) Torque -speed characteristics (ii) Power factor-line current characteristics, No load and blocked rotor tests on a single phase induction motor and determine equivalent circuit Open circuit and short circuit tests on a three phase alternator and determine voltage regulation at full load and at unity, 0.8 lagging and leading power factors by (i) EMF method (ii) MMF method.

BEE-C461 Electrical Machine II Lab

						C	O-PO/PS	SO MAP	PING								
	Action Verb (CO)	Bloo m's Level		Program Outcomes (POs)										Progra Specif Outcon (PSOs	ic nes		
Cours e Outco mes (COs)			Engine ering Knowl edge	Proble m Analys is	Design/Deve lopment of Solutions	Conduct Investig ations of Comple x Problem s	Mode m Tool Usage	The Engin eer and Societ y	Environ ment and Sustaina bility	Eth ics	Indid ual and Tea m Wor k	Communi cation	Project Manage ment and Finance	Life Long Lear ning			
			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO1 2	PSO 1	PS O2	PS O3
CO1	Deter mine	Eval uate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
CO2	Explai n	Eval uate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
CO3	Justif y	Eval uate L5	3	3	3	3	3	3	2	2	3	3		3	3	3	
	Aver	age	3	3	3	3	3	3	2	2	3	3		3	3	3	

Mapping			41 -	
%age	0 - 5 =	<i>6 - 40 =</i>	<i>60 =</i>	61 - 100
7.1.3.1.2		1	2	= 3
Manpping	110			Substan
Correlation	COTTEL	Low/	Mode	tial/
	ation	Slight	rate	High

Mapping Correlation	No correlati on	Low/ Slight	Mode rate	Substan tial/ High
		1	2	3

Course Name: POWER ELECTRONICS LAB

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit : 4
3 1 0	

Prerequisites:	About power semiconductor switches and their working.
Objectives:	The course should enable the students to:
	I. Examine the characteristics of various devices and application of firing circuits used in
	power electronics.
	II. Outline the performance characteristics of AC voltage regulators, choppers, inverters,
	rectifiers and cycloconverters
Course	Mr. Brijesh Kumar
Coordinator	

Experiment No	Course Content	No. of Hours	POs mapped	PSOs mapped
1	To study the DC voltage trigger with superimposed AC (SCR triggering circuit)		PO1/ PO2/ PO3/ O6/PO7/	PSO1/PSO2/ PSO3
2	SCR trigger by R and R-C phase shift circuit.	02	PO1/PO2/PO3 /PO6/PO7/	PSO1/PSO2/ PSO3
3	To study the SCR phase control circuit.	02	PO1/PO2/PO3 /PO6/PO7	PSO1/PSO 2/PSO3
4	To study the Triac phase control circuit.	02	PO1/ PO2/ PO3/ O6/PO7	PSO1/PSO 2/PSO3
5	To study the voltage commutated DC Chopper	02	PO1/ PO2/ PO3/ O6/PO7	PSO1/PSO 2/PSO3
6	To study the current commutated DC Chopper.	02	PO1/ PO2/ PO3/ O6/PO7	PSO1/PSO 2/PSO3
7	To study the IGBT single-phase Inverter.	02	PO1/ PO2/ PO3/ O6/PO7	PSO1/PSO 2/PSO3
8	To study MOSFET single-phase Inverter.	02	PO1/ PO2/ PO3/PO6/PO7	PSO1/PSO 2/PSO3
Total No. of Hours		40		

Course	CO1 . Study and describe the operation and characteristics of SCR, MOSFET, TRAIC.	
Outcomes:	CO2. Study of design of DC-to-DC Conversion circuits.	
	CO3. Study and the understanding the operation of Single phase controlled rectifiers.	
	CO4 . Study of design and analysis of power electronics converters characteristics.	
	CO5. Applying the switching concept for different converter to control the output.	

Cou rse Out	Act ion Ver	Bloom 's Level				P	rogran	1 Outcor	nes (POs)						ogram utcom		
com	b		Engi neeri ng know ledge	Pro ble m ana lysi s	Desig n /devel opme nt of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mo der n tool usa ge	The eng inee r and soci ety	Envir onme nt and sustai nabili ty	E th ic s	Individ ual and team work	Com muni cation	Pro ject ma nag em ent and fina nce	Li fe- lo ng le ar ni ng			
			PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	P O 8	PO9	PO10	PO 11	P O 12	PS O 1	PS O 2	PS O 3
CO1	Des crib e	Under standi ng	3	3	2			1	2						3	3	3
CO2	desi gn	Analy zing	3	3	2			1	2						1	1	1
CO3	und erst and ing	Applyi ng	3	2	2			1	2						2	2	1
CO4	Exp lain	Under standi ng	3	2	2			1	2						3	3	3
CO5	Des crib e	Reme mberi ng	3	3	2			1	2						2	2	1

Course Name: ELECTRICAL MEASUREMENT AND MEASURING INSTRUMENT LAB

MM: 100	Sessional: 30
Time: 3 Hr.	ESE: 70
LTP	Credit: 3
3 0 0	

Prerequisites:	Basic knowledge about the elements of Electrical Engineering, Electrical											
	circuits, and Analog Electronics											
Objectives:	1. This course deals with basic introduction of system components											
	of electrical systems, and provides hands on practice in											
	assembling, interconnecting, testing, and repairing such system											
	by making use of various tools used in electrical workshop.											
Course	Mr. Gaurav Kumar, Asst. professor											
Coordinator												

Experiments	Lab Content	No. of	POs	PSOs
1		Hours	mapped	mapped
Exp. No. 1	Calibration of A.C. voltmeter and	02	PO1/PO2	PSO 1/PSO
	A.C. ammeter.		PO3/ PO4	2/ PSO 3
Exp. No. 2	Measurement of low resistance by Kelvin's	02	PO1/PO2	PSO 1/PSO
	double bridge		PO3/ PO4	2/ PSO 3
Exp. No. 3	Measurement of voltage, current and	02	PO1/PO2	PSO 1/PSO
	resistance using D.C. potentiometer		PO3/ PO4	2/ PSO 3
Exp. No. 4	Measurement of inductance by Maxwell's	02	PO1/PO2	PSO 1/PSO
1	bridge.		PO3/ PO4	2/ PSO 3
Exp. No. 5	Measurement of inductance by Hay's bridge.	02	PO1/PO2	PSO 1/ PSO
			PO3/ PO4	2/ PSO 3
Exp. No. 6	Measurement of inductance by Anderson's	02	PO3/ PO1	PSO 1/PSO
	bridge.			2/ PSO 3
Exp. No. 7	Measurement of capacitance by Owen's	02	PO1/PO3	PSO 1/PSO
	bridge.			2/ PSO 3
Exp. No. 8	Measurement of capacitance by De Sauty	02	PO1/PO3	PSO 1/PSO
	bridge.			2/ PSO 3
Exp. No. 9	Measurement of capacitance by Schering	02	PO3/PO4/	PSO 1/PSO
	bridge.		PO1/PO2	2/ PSO 3
Exp. No. 10	Measurement of power and power factor of a	02	PO3/ PO4	PSO 1/PSO
	single-phase inductive load and to study effect			2/ PSO 3
	of capacitance connected across the			
	load on the power factor			
Exp. No. 11	Measurement of power and power factor of a	02	PO3/PO4/	PSO 1/PSO
·	three-phase load		PO1/PO2	2/ PSO 3
Exp. No. 12	Measurement of phase difference and	02	PO3/PO4	PSO 1/PSO
_	frequency of a sinusoidal A.C. voltage using			2/ PSO 3
	C.R.O.			

Course Outcomes:	 Identify the functions of various types of electrical measuring instruments.
	Develop electric circuits for verifying different network theorems.
	3. Apply standard procedures for the measurement of resistance, inductance and capacitance.
	4. Apply various methods for power measurements in AC circuits and examine the calibration of meters.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	3	1				3			1	2	3	3
CO2	3	3	3	3		1		1				3	2	3	3
CO3	3	3	3	3	1		2		2		1		2	3	3
CO4	3	3	3	3	1	2					1		2	3	3
CO4	3	3	3	2					1			2	2	3	2

